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1. Introduction

Synthetic control methods (Abadie and 
Gardeazabal 2003; Abadie, Diamond, 

and Hainmueller 2010) have become widely 
applied in empirical research in economics 
and other disciplines. Under appropriate 

conditions, synthetic controls provide sub-
stantial advantages as a research design 
method in the social sciences. These advan-
tages, I believe, explain the increasing 
popularity of synthetic control methods 
in empirical research. At the same time, 
the validity of synthetic control estimators 
depends on important practical require-
ments. Perfunctory applications that ignore 
the context of the empirical investigation and 
the characteristics of the data may miss the 
mark, producing misleading estimates.

My goal with this article is to provide guid-
ance for empirical practice to researchers 
employing synthetic control methods. With 
this goal in mind, I put special emphasis on 
feasibility, data requirements, contextual 
requirements, and methodological issues 
related to the empirical application of syn-
thetic controls. Particularly important is 
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characterizing the practical settings where 
synthetic controls may be useful and those 
where they may fail.

Section 2 briefly introduces the ideas 
behind the synthetic control methodology 
in the context of comparative case studies. 
Section 3 discusses some of the formal aspects 
of the synthetic control methodology that are 
of particular interest for empirical applica-
tions. Readers who are already familiar with 
the synthetic control methodology may only 
need to read subsections 3.3 to 3.5 in detail, 
and skim through section 2 and the rest of 
section 3 in order to acquaint themselves with 
terms and notation that will be employed in 
later sections. Sections 4 through 6 comprise 
the core of the article. Section 4 discusses the 
practical advantages of synthetic control esti-
mators. Sections 5 and 6 discuss contextual 
and data requirements for synthetic control 
empirical studies. I discuss the validity of these 
requirements in applied settings and potential 
ways to adapt the research design when the 
requirements do not hold in practice. Section 
7 describes robustness and diagnostic checks 
to evaluate the credibility of a synthetic con-
trol counterfactual and to measure the extent 
to which results are sensitive to changes in the 
study design. Section 8 discusses extensions 
and recent proposals. The final section con-
tains conclusions and describes open areas for 
research on synthetic controls.

2.  A Primer on Synthetic Control 
Estimators

In a recent Journal of Economic Perspectives 
survey on the econometrics of policy eval-
uation, Susan Athey and Guido Imbens 
describe synthetic controls as “arguably the 
most important innovation in the policy eval-
uation literature in the last 15 years” (Athey 
and Imbens 2017). In the last few years, syn-
thetic controls have been applied to study 
the effects of right-to-carry laws (Donohue, 
Aneja, and Weber 2019), legalized prostitution 

(Cunningham and Shah 2018), immigration 
policy (Bohn, Lofstrom, and Raphael 2014), 
corporate political connections (Acemoglu 
et  al. 2016), taxation (Kleven, Landais, and 
Saez 2013), organized crime (Pinotti 2015), 
and many other key policy issues. They have 
also been adopted as the main tool for data 
analysis across different sides of the issues in 
recent prominent debates on the effects of 
immigration (Borjas 2017, Peri and Yasenov 
2019) and minimum wages (Allegretto et al. 
2017, Jardim et  al. 2017, Neumark and 
Wascher 2017, Reich et  al. 2017). Synthetic 
controls are also applied outside econom-
ics: in the social sciences, biomedical disci-
plines, engineering, etc. (see, e.g., Heersink, 
Peterson, and Jenkins 2017; Pieters et  al. 
2017). Outside academia, synthetic controls 
have found considerable coverage in the 
popular press (see, e.g., Guo 2015, Douglas 
2018) and have been widely adopted by mul-
tilateral organizations, think tanks, business 
analytics units, governmental agencies, and 
consulting firms. For example, the synthetic 
control method plays a prominent role in the 
official evaluation of the effects of the massive 
Bill & Melinda Gates Foundation’s Intensive 
Partnerships for Effective Teaching program 
(Gutierrez, Weinberger, and Engberg 2016).

Synthetic control methods were originally 
proposed in Abadie and Gardeazabal (2003) 
and Abadie, Diamond, and Hainmueller 
(2010) with the aim to estimate the effects 
of aggregate interventions, that is, interven-
tions that are implemented at an aggregate 
level affecting a small number of large units 
(such as a cities, regions, or countries), on 
some aggregate outcome of interest. More 
recently, synthetic control methods have 
been applied to settings with a large num-
ber of units.1 We will discuss this and other 
extensions in section 8.

1 See, for example, Acemoglu et al. (2016), Kreif et al. 
(2016), Abadie and L’Hour (2019), and Dube and Zipperer 
(2015).
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Consider a setting where one aggregate 
unit, such as a state or a school district, is 
exposed to an event or intervention of inter-
est. For example, Abadie, Diamond, and 
Hainmueller (2010) study the effect of a large 
tobacco control program adopted in California 
in 1988, and  Bifulco, Rubenstein, and Sohn 
(2017) evaluate the effects of an educational 
program adopted in the Syracuse, New York, 
school district in 2008. In accordance with 
the program evaluation literature in econom-
ics, the terms “treated” and “untreated” will 
refer to units exposed and not exposed to the 
event or intervention of interest, respectively. 
I will use the terms “event,” “intervention,” 
and “treatment” interchangeably. Traditional 
regression analysis techniques require large 
samples and many observed instances of the 
event or intervention of interest and, as a 
result, they are often ill-suited to estimate the 
effects of infrequent events, such as policy 
interventions, on aggregate units. Economists 
have approached the estimation of the effects 
of large-scale but infrequent interventions 
using time-series analysis and comparative 
case studies. Single-unit time-series analysis 
is an effective tool to study the short-term 
effects of policy interventions in cases when 
we expect short-term effects to be of a sub-
stantial magnitude.2 However, the use of 
time-series techniques to estimate medium 
and long-term effects of policy intervention 
is complicated by the presence of shocks to 
the outcome of interest, aside from the effect 
of the intervention. Comparative case stud-
ies are based on the idea that the effect of an 
intervention can be inferred by comparing the 
evolution of the outcome variables of interest 

2 The literature on “interrupted time-series” is partic-
ularly relevant in the context of policy evaluation. See, for 
example, Cook and Campbell (1979), which discusses the 
limitations of this methodology if interventions are gradual 
rather than abrupt and/or if the causal effect of an inter-
vention is delayed in time. Interrupted time-series meth-
ods are closely related to regression-discontinuity design 
techniques (see, e.g., Thistlethwaite and Campbell 1960).

between the unit exposed to treatment and a 
group of units that are similar to the exposed 
unit but were not affected by the treatment. 
This can be achieved whenever the evolu-
tion of the outcomes for the unit affected by 
the intervention and the comparison units is 
driven by common factors that induce a sub-
stantial amount of co-movement.

Comparative case studies have long been 
applied to the evaluation of large-scale events 
or aggregate interventions. For example, to 
estimate the effects of the massive arrival of 
Cuban expatriates to Miami during the 1980 
Mariel boatlift on native unemployment in 
Miami, Card (1990) compares the evolution 
of native unemployment in Miami at the 
time of the boatlift to the average evolution 
of native unemployment in four other cit-
ies in the United States. Similarly, Card and 
Krueger (1994) use Pennsylvania as a com-
parison to estimate the effects of an increase 
in the New Jersey minimum wage on employ-
ment in fast food restaurants in New Jersey. 
A drawback of comparative case studies of 
this type is that the selection of the compar-
ison units is not formalized and often relies 
on informal statements of affinity between 
the units affected by the event or interven-
tion of interest and a set of comparison units. 
Moreover, when the units of observation are a 
small number of aggregate entities, like coun-
tries or regions, no single unit alone may pro-
vide a good comparison for the unit affected 
by the intervention.

The synthetic control method is based on 
the idea that, when the units of observation 
are a small number of aggregate entities, a 
combination of unaffected units often pro-
vides a more appropriate comparison than 
any single unaffected unit alone. The syn-
thetic control methodology formalizes the 
selection of the comparison units using a 
data driven procedure. As we will discuss 
later, this formalization also opens the door 
to a mode of quantitative inference for com-
parative case studies.
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3.  Formal Aspects of the Synthetic Control 
Method

3.1 The Setting

Suppose that we obtain data for ​J + 1​ 
units: ​j = 1, 2, … , J + 1​. Without loss of gen-
erality, we assume that the first unit (  ​j = 1​) 
is the treated unit, that is, the unit affected 
by the policy intervention of interest.3 The 
“donor pool,” that is, the set of potential 
comparisons, ​j = 2, … , J + 1​ is a collec-
tion of untreated units not affected by the 
intervention. We assume also that our data 
span ​T​ periods and that the first ​​T​0​​​ periods 
are before the intervention. For each unit, ​j​, 
and time, ​t​, we observe the outcome of inter-
est, ​​Y​jt​​​. For each unit, ​j​, we also observe a set 
of ​k​ predictors of the outcome, ​​X​1j​​, … , ​X​kj​​​, 
which may include pre-intervention values 
of ​​Y​jt​​​ and which are themselves unaffected 
by the intervention. The ​k × 1​ vec-
tors ​​X​1​​, … , ​X​J+1​​​ contain the values of the 
predictors for units ​j = 1, … , J + 1​, respec-
tively. The ​k × J​ matrix, ​​X​0​​ = ​[​X​2​​ ⋯  ​X​J+1​​]​​, 
collects the values of the predictors for the ​J​ 
untreated units. For each unit, ​j​, and time 
period, ​t​, we will define ​​Y​ jt​ N​​ to be the poten-
tial response without intervention. For the 
unit affected by the intervention, ​j = 1​, and 
a post-intervention period, ​t > ​T​0​​​, we will 
define ​​Y​ 1t​ I ​​ to be the potential response under 
the intervention.4 Then, the effect of the 

3 The synthetic control framework can easily accom-
modate estimation with multiple treated units by fitting 
separate synthetic controls for each of the treated units. 
In practice, however, estimation with several treated units 
may carry some practical complications that are discussed 
in section 8.

4 ​​Y​ 1t​ 
I ​​ and ​​Y​ jt​ N​​ are the potential outcomes of Rubin’s  

model for causal inference (see, e.g., Rubin 1974, Holland 
1986). To simplify notation, I exclude the start time of 
the intervention from the notation for ​​Y​ 1t​ I ​​. Notice, how-
ever, that the value of ​​Y​ 1t​ I ​​ depends in general not only on 
when the intervention starts, but also other features of the 
intervention that are fixed in our analysis and, therefore, 
excluded from the notation.

intervention of interest for the affected unit 
in period ​t​ (with ​t > ​T​0​​​) is:

(1)	​​ τ​1t​​ = ​Y​ 1t​ I ​ − ​Y​ 1t​ N ​.​

Because unit “one” is exposed to the 
intervention after period ​​T​0​​​, it follows that 
for ​t > ​T​0​​​ we have ​​Y​1t​​ = ​Y​ 1t​ I ​​. Simply put, for 
the unit affected by the intervention and a 
post-intervention period we observe the 
potential outcome under the intervention. 
The great policy evaluation challenge is  
to estimate ​​Y​ 1t​ N ​​ for ​t > ​T​0​​​: how the outcome  
of interest would have evolved for the 
affected unit in the absence of the interven-
tion. This is a counterfactual outcome, as the 
affected unit was, by definition, exposed to 
the intervention of interest after ​t = ​T​0​​​. As 
equation (1) makes clear, given that ​​Y​ 1t​ I ​​ is 
observed, the problem of estimating the 
effect of a policy intervention is equivalent 
to the problem of estimating ​​Y​ 1t​ N ​​. Notice also 
that equation (1) allows the effect of the 
intervention to change over time. This is cru-
cial because intervention effects may not be 
instantaneous and may accumulate or dissi-
pate as time after the intervention passes.

3.2 	Estimation

Comparative case studies aim to repro-
duce ​​Y​ 1t​ N ​​—that is, the value of the outcome 
variable that would have been observed 
for the affected unit in the absence of the 
intervention—using one unaffected unit 
or a small number of unaffected units that 
have similar characteristics as the affected 
unit at the time of the intervention. When 
the data consist of a few aggregate entities, 
such as regions or countries, it is often dif-
ficult to find a single unaffected unit that 
provides a suitable comparison for the unit 
affected by the policy intervention of inter-
est. As mentioned above, the synthetic con-
trol method is based on the observation that 
a combination of units in the donor pool 
may approximate the characteristics of the 
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affected unit substantially better than any 
unaffected unit alone. A synthetic control is 
defined as a weighted average of the units in 
the donor pool. Formally, a synthetic con-
trol can be represented by a ​J × 1​ vector of 
weights, ​W = ​​(​w​2​​, … , ​w​J+1​​)​ ′ ​​. Given a set of 
weights, ​W​, the synthetic control estimators 
of ​​Y​ 1t​ N ​​ and ​​τ​1t​​​ are, respectively:

(2)	​​​ Y ˆ ​​ 1t​ N​ = ​ ∑ 
j=2

​ 
J+1

​​ ​w​j​​ ​Y​jt​​,​

and

(3)	​​​ τ ˆ ​​1t​​ = ​Y​1t​​ − ​​Y ˆ ​​ 1t​ N​.​

To avoid extrapolation, the weights are 
restricted to be nonnegative and to sum 
to one, so synthetic controls are weighted 
averages of the units in the donor pool. 
The requirement that weights should be 
nonnegative and no greater than one can 
be relaxed at the cost of allowing extrapo-
lation. For example, Abadie, Diamond, and 
Hainmueller (2015) show that, in the context 
of estimating the effect of a policy interven-
tion, there is a regression estimator that can 
be represented as a synthetic control with 
weights that are unrestricted except for that 
the sum of the weights is equal to one. By not 
restricting the weights to be in ​​[0, 1]​​, regres-
sion allows extrapolation.5 Restricting syn-
thetic control weights to be nonnegative and 
sum to one generates synthetic controls that 
are weighted averages of the outcomes of 
units in the donor pool, with weights that are 
typically sparse (see section 4). That is, only a 
small number of units in the donor pool con-
tribute to the estimate of the counterfactual 

5 See section 4 for details. Doudchenko and Imbens 
(2016), Ferman (2019), and Li (2020) discuss the role of 
weight restrictions as regularization devices. Doudchenko 
and Imbens (2016) and Chernozhukov, Wüthrich, and Zhu 
(2019a) propose alternative regularization procedures for 
synthetic controls based on the elastic net and the lasso, 
respectively.

of interest, ​​​Y ˆ ​​ 1t​ N​​, and the contribution of each 
unit is represented by its synthetic control 
weight. Because synthetic control weights 
define a weighted average and because they 
are sparse, the specific nature of a synthetic 
control counterfactual estimate is partic-
ularly transparent, relative to competing 
methods. Notice also that considering syn-
thetic controls with weights that sum to one 
may be warranted only if the variables in the 
data are rescaled to correct for differences in 
size between units (e.g., per capita income) 
or if such correction is not needed because 
the variables in the data do not scale with 
size (e.g., prices).

As an example, a synthetic control that 
assigns equal weights, ​​w​j​​ = 1 / J​, to each of 
the units in the control group results in the 
following estimator for ​​τ​1t​​​:

(4)	​​​ τ ˆ ​​1t​​ = ​Y​1t​​ − ​ 1 _ 
J
 ​ ​ ∑ 
j=2

​ 
J+1

​​ ​Y​jt​​.​

In this case, the synthetic control is the sim-
ple average of all the units in the donor pool. 
A population-weighted version is

(5)	​​​ τ ˆ ​​1t​​ = ​Y​1t​​ − ​ ∑ 
j=2

​ 
J+1

​​ ​w​ j​ 
pop​ ​Y​jt​​,​

where ​​w​ j​ 
pop​​ is the population in unit ​j​ (e.g., 

at the time of the intervention) as a fraction 
of the total population in the donor pool. If, 
however, a single unit, ​m​, in the donor pool 
is used as a comparison, then ​​w​m​​ = 1​, ​​w​j​​ = 0​ 
for ​j ≠ m​, and 

(6)	​​​ τ ˆ ​​1t​​ = ​Y​1t​​ − ​Y​mt​​.​

For nearest-neighbor estimators, ​m​ is the 
index value that minimizes ​∥ ​X​1​​ − ​X​j​​ ∥​ over ​j​ 
for some norm ​∥ ⋅ ∥​.

Expressing the comparison unit as a syn-
thetic control motivates the question of 
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how the weights, ​​w​2​​, … , ​w​J+1​​​, should be  
chosen in practice. Abadie and 
Gardeazabal (2003) and Abadie, Diamond, 
and Hainmueller (2010) propose to 
choose ​​w​2​​, … , ​w​J+1​​​ so that the resulting 
synthetic control best resembles the 
pre-intervention values for the treated unit 
of predictors of the outcome variable. That is, 
given a set of nonnegative constants, ​​v​1​​, … , ​v​k​​​, 
Abadie and Gardeazabal (2003) and Abadie, 
Diamond, and Hainmueller (2010) pro-
pose to choose the synthetic control, 
​​W​​ ⁎​ = ​​(​​​w​ 2​​ ​ ⁎​, … , ​​​w​ J+1​​ ​ ⁎ ​ )​ ′ ​​ that minimizes

(7) ​ ∥​X​1​​ − ​X​0​​ W∥ 

	 = ​​(​ ∑ 
h=1

​ 
k

  ​​​v​h​​​​(​X​h1​​ − ​w​2​​ ​X​h2​​ − ⋯ 

	  − ​w​J+1​​ ​X​hJ+1​​)​​​ 2​)​​​ 

1/2

​​

subject to the restriction that ​​w​2​​, … , ​w​J+1​​​ are 
nonnegative and sum to one.6 Then, the esti-
mated treatment effect for the treated unit at 
time ​t = ​T​0​​ + 1, … , T​ is

(8)	​​​ τ ˆ ​​1t​​ = ​Y​1t​​ − ​ ∑ 
j=2

​ 
J+1

​​ ​w​ j​ ⁎​ ​Y​jt​​.​

The positive constants ​​v​1​​, … , ​v​k​​​ in (7) reflect 
the relative importance of the synthetic con-
trol reproducing the values of each of the ​k​ 
predictors for the treated unit, ​​X​11​​, … , ​X​k1​​​. For 
a given set of weights, ​​v​1​​, … , ​v​k​​​, minimizing 
equation (7) can be easily accomplished 
using constrained quadratic optimiza-
tion. That is, each potential choice of 
​V = ​(​v​1​​, … , ​v​k​​)​​ produces a synthetic con-
trol, ​W​(V)​ = ​​(​w​2​​​(V)​, … , ​w​J+1​​​(V)​)​ ′ ​​, which 

6 For the sake of expositional simplicity, I discuss only 
the normalized Euclidean norm in equation (7). Of course, 
other norms are possible. Also, to avoid notational clut-
ter, dependence of the norm in equation (7) from the 
weights ​​v​1​​, … , ​v​k​​​ is left implicit in the notation.

can be determined by minimizing equation 
(7), subject to the restriction that the weights 
in ​W​(V)​​ are positive and sum to one.

Of course, a question remains about how 
to choose ​V​. A simple selector of ​​v​h​​​ is the 
inverse of the variance of ​​X​h1​​, … , ​X​hJ+1​​​, 
which in effect rescales all rows of ​​[​X​1​​  :  ​X​0​​]​​ 
to have unit variance. Alternatively, Abadie 
and Gardeazabal (2003) and Abadie, 
Diamond, and Hainmueller (2010) 
choose ​V​, such that the synthetic control 
​W​(V)​​ minimizes the mean squared predic-
tion error (MSPE) of this synthetic control 
with respect to ​​Y​ 1t​ N ​​:

​​ ∑ 
t∈​​0​​

​ 
 

 ​​​​ (​Y​1t​​ − ​w​2​​​(V)​​Y​2t​​ − ⋯ −  ​w​J+1​​​(V)​ ​Y​J+1t​​)​​​ 
2
​,​

for some set ​​​0​​  ⊆ ​ {1, 2, … , ​T​0​​}​​ of pre- 
intervention periods. Abadie, Diamond, 
and Hainmueller (2015) propose a related 
method to choose ​​v​1​​, … , ​v​k​​​ via out-of-sample  
validation. The ideas behind out-of-sample 
validation selection of ​​v​1​​, … , ​v​k​​​ are described 
next. The goal of the synthetic control is to 
approximate the trajectory that would have 
been observed for ​​Y​1t​​​ and ​t > ​T​0​​​ in the 
absence of the intervention. For that pur-
pose, the synthetic control method selects 
a set of weights ​W​ such that the resulting 
synthetic control resembles the affected 
unit before the intervention along the val-
ues of the variables ​​X​11​​, … , ​X​k1​​​. The ques-
tion of choosing ​V = ​(​v​1​​, … , ​v​k​​)​​ boils down 
to assessing the relative importance of 
each of ​​X​11​​, … , ​X​k1​​​ as a predictor of ​​Y​ 1t​ N ​​. 
That is, the value ​​v​h​​​ aims to reflect the rel-
ative importance of approximating the value 
of ​​X​h1​​​ for predicting ​​Y​ 1t​ N ​​ in the post-intervention 
period, ​t = ​T​0​​ + 1, … , T​. Because ​​Y​ 1t​ N ​​ is not 
observed for ​t = ​T​0​​ + 1, … , T​, we cannot 
directly evaluate the relative importance of 
fitting each predictor to approximate ​​Y​ 1t​ N ​​ in 
the post-intervention period. However, ​​Y​ 1t​ N ​​ 
is observed for the pre-intervention peri-
ods ​t = 1, 2, … , ​T​0​​​, so it is possible to use 
pre-intervention data to assess the predictive 
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power on ​​Y​ 1t​ N ​​ of the variables ​​X​1j​​, … , ​X​kj​​​. This 
can be accomplished in the following manner. 

1.	 Divide the pre-intervention periods 
into a initial training period and a  
subsequent validation period. For 
simplicity and concreteness, we 
will assume that ​​T​0​​​ is even and the 
training and validation periods span 
​t = 1, …, ​t​0​​​ and ​t = ​t​0​​ + 1, …, ​T​0​​​, 
respectively, with ​​t​0​​ = ​T​0​​ / 2​. In practice, 
the lengths of the training and valida-
tion periods may depend on applica-
tion-specific  factors, such as the extent 
of data availability on outcomes in the 
pre-intervention and post-intervention 
periods, and the specific times when 
the predictors are measured in the data.

2.	 For every value ​V​, let ​​​w ̃ ​​2​​​(V)​, … , ​​w ̃ ​​J+1​​​(V)​​  
be the synthetic control weights com-
puted with training period data on the 
predictors. The MSPE of this synthetic 
control with respect to ​​Y​ 1t​ N ​​ in the valida-
tion period is

	 (9) ​​   ∑ 
t=​t​0​​+1

​ 
​T​0​​

 ​​ ​​ (​Y​1t​​ − ​​w ̃ ​​2​​​(V)​ ​Y​2t​​ − ⋯

	  − ​​w ̃ ​​J+1​​​(V)​ ​Y​J+1t​​)​​​ 
2
​​.

3.	 Select a value V⁎ ∈  such that the 
MSPE in equation (9) is small, where  
is a set of potential values for V. 

4.	 Use the resulting ​​V​​ ⁎​​ and data on the pre-
dictors for the last ​​t​0​​​ periods before in 
the intervention, ​t = ​T​0​​ − ​t​0​​ + 1, … , ​T​0​​​, 
to calculate ​​W​​ ⁎​ = W​(​V​​ ⁎​)​​.7

7 As discussed in Klößner et al. (2018), cross-validation 
weights are not always unique. That is, minimization of 
equation (9) may not have a unique solution. In principle, 
this could be dealt with via penalization (e.g., adding a term ​
γ​∑ h=1​ 

k  ​​ ​v​ m​ 2 ​​ for some ​γ > 0​ to equation (9), which favors 
dense sets of weights). In practice, however, researchers 

This is a heuristic procedure, and one that 
is useful only as long as it produces V  ⁎, such 
that ​​Y​1t​​​ ≈ ​​w ̃ ​​2(V⁎)​​Y​2t​​​ + ⋯ + ​​​w ̃ ​​J+1​​​(V⁎)​​Y​J+1t​​​ 
for t = ​​t​0​​​ + 1, … , ​​T​0​​​, and ​​X​1​​​ ≈ ​​X​0​​​ W  ⁎ for the 
set of predictors used to calculate W  ⁎.

To give sharpness to the discussion of the 
properties and practical implementation 
of synthetic control estimators I will refer, 
as a running example, to an application in 
Abadie, Diamond, and Hainmueller (2015), 
which estimates the effect of the 1990 
German reunification on per capita GDP 
in West Germany. In this application, the 
intervention is the 1990 German reunifica-
tion and the treated unit is the former West 
Germany. The donor pool consists a set of 
industrialized countries, and ​​X​1​​​ and ​​X​0​​​ col-
lect prereunification values of predictors of 
economic growth. Figure 1, panel A, com-
pares the trajectory of per capita GDP before 
and after the reunification for West Germany 
and a simple average of the countries in the 
donor pool, for the years 1960–2003. This 
is the comparison in equation (4). Average 
per capita GDP among the countries in the 
donor pool fails to reproduce the trajec-
tory of per capita GDP for West Germany 
even before the reunification takes place in 
1990. Moreover, the restriction of parallel 
trends required for difference-in-differences 
models (see, e.g., Abadie 2005, Angrist 
and Pischke 2009) fails to hold in the 
pre-intervention data. Figure 1, panel B, 
reports the trajectory of per capita GDP for 
West Germany and for a synthetic control 
calculated in the manner explained in this 
section. This figure shows that a weighted 
average of the countries in the donor pool 
is able to closely approximate the trajectory 
of per capita GDP for West Germany before 
the German reunification.

Moreover, the synthetic control of fig-
ure 1, panel B, closely reproduces the 

should aim to demonstrate that their results are not overly 
sensitive to particular choices of ​V​.
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prereunification values of economic growth 
predictors for West Germany. In columns 1 
to 4, table 1 reports the value of economic 
growth predictors for West Germany, ​​X​1​​​, 
for the synthetic control, ​​X​0​​ ​W​​ ⁎​​, for the sim-
ple average of the units in the donor pool as 
in equation (4), and for the single compar-
ison estimator of equation (6), where ​m​ is 
the index of the nearest neighbor in terms 
of the values of the predictors in ​​X​1​​​ (see 
table 1 note for details). The results in table 
1 illustrate the potential benefit in terms 
of the fit of the covariates from using syn-
thetic control methods in studies with a 
few comparison units in the donor pool. 
While the simple average of the countries 
in the OECD sample and the nearest neigh-
bor both fail to reproduce the economic 
growth predictors for West Germany prior 
to the reunification, a synthetic control 
provides a rather accurate approximation 

to the value of the predictors for West  
Germany.

Table 2 relays the identities and contribu-
tions of each of the units in the donor pool 
to the synthetic control for West Germany. 
Austria carries the largest weight, with the 
United States, Japan, Switzerland, and the 
Netherlands also contributing to the synthetic 
control with weights in decreasing order. The 
rest of the countries in the donor pool do not 
contribute to the synthetic control for West 
Germany. As we will see later, the sparsity of 
the weights in table 2 is typical of synthetic 
control estimators, and is a consequence of 
the geometric characteristics of the solution 
to the optimization problem that generates 
synthetic controls.

3.3	 Bias Bound

Abadie, Diamond, and Hainmueller 
(2010) study the bias properties of synthetic 
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Figure 1. Synthetic Control Estimation in the German Reunification Example

Notes: Panel A compares the evolution of per capita GDP in West Germany to the evolution of per capita 
GDP for a simple average of OECD countries. In panel B the comparison is with a synthetic control calcu-
lated in the manner explained in subsection 3.2. See Abadie, Diamond, and Hainmueller (2015) for details.
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controls estimators for the cases when ​​Y​ 1t​ N ​​ is 
generated by (i) a linear factor model, or (ii) 
a vector autoregressive model.8 They show 
that, under some conditions, the synthetic 

8 Notice that the assumptions on the data-generating 
process involve ​​Y​ jt​ N​​, but not ​​Y​ 1t​ I ​​. Since ​​Y​ 1t​ I ​ = ​Y​1t​​​ is observed, 

control estimator is unbiased for a vector 
autoregressive model, and provide a bias 
bound for a linear factor model. Here, I will 
restrict the exposition to the linear factor 

estimation of ​​τ​1t​​​ for ​t > ​T​0​​​ requires no assumptions on the 
process that generates ​​Y​ 1t​ I ​​.

TABLE 1 
Economic Growth Predictor Means before the German Reunification

West Germany Synthetic West Germany OECD average Austria (nearest neighbor)
(1) (2) (3) (4)

GDP per capita 15,808.9 15,802.2 13,669.4 14,817.0
Trade openness 56.8 56.9 59.8 74.6
Inflation rate 2.6 3.5 7.6 3.5
Industry share 34.5 34.4 33.8 35.5
Schooling 55.5 55.2 38.7 60.9
Investment rate 27.0 27.0 25.9 26.6

Note: The first column reports ​​X​1​​​, the second column reports ​​X​0​​ ​W​​ ⁎​​, the third column reports a simple average of ​​X​j​​​ 
for the 16 OECD countries in the donor pool, and the last column reports the value of ​​X​j​​​ for the nearest neighbor  
of West Germany in terms of predictors values. GDP per capita, inflation rate, and trade openness are averages for 
the 1981–90 period. Industry share (of value added) is the average for 1981–89. Schooling is the average for 1980 
and 1985. Investment rate is averaged over 1980–84. See Abadie, Diamond, and Hainmueller (2015) for variable 
definitions and sources. The nearest neighbor in column 4 minimizes the Euclidean norm of the pairwise differences 
between the values of the predictors for West Germany and for each of the countries in the donor pool, after resca-
ling the predictors to have unit variance.

TABLE 2 
Synthetic Control Weights for West Germany

Australia —
Austria 0.42
Belgium —
Denmark —
France —
Greece —
Italy —
Japan 0.16
Netherlands 0.09
New Zealand —
Norway —
Portugal —
Spain —
Switzerland 0.11
United Kingdom —
United States 0.22
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model, which can be seen as a generalization 
of difference in differences. Consider the 
following linear factor model for ​​Y​ jt​ N​​,

(10)	​​ Y​ jt​ N​ = ​δ​t​​ + ​θ​t​​ ​Z​j​​ + ​λ​t​​ ​μ​j​​ + ​ε​jt​​,​

where ​​δ​t​​​ is a time trend, ​​Z​j​​​ and ​​μ​j​​​ are vec-
tors of observed and unobserved predic-
tors of ​​Y​ jt​ N​​, respectively, with coefficients ​​θ​t​​​ 
and ​​λ​t​​​, and ​​ε​jt​​​ is zero mean individual tran-
sitory shocks. In the time-series literature in 
econometrics, ​​θ​t​​​ and ​​λ​t​​​ are referred to as com-
mon factors, and ​​Z​j​​​ and ​​μ​j​​​ as factor loadings. 
The term ​​δ​t​​​ is a common factor with constant 
loadings across units, while ​​λ​t​​​ represents a 
set of common factors with varying loadings 
across units. A difference-in-differences/
fixed effects panel model can be obtained 
from equation (10) by restricting ​​λ​t​​​ to be 
time invariant, so ​​λ​t​​ = λ​ (see Bai 2009). 
This has the effect of restricting the mean 
outcomes of units with the same values for 
the observed predictors, ​​Z​j​​ = z​, to follow 
parallel trends, ​​δ​t​​ + ​θ​t​​ z + λ​μ​j​​​. A linear fac-
tor model provides a useful extension to the 
difference-in-differences/fixed effects panel 
data models by allowing ​​Y​ jt​ N​​ to depend on 
multiple unobserved components, ​​μ​j​​​, with 
coefficients, ​​λ​t​​​, that change in time. In con-
trast to difference in differences, the linear 
factor model does not impose parallel mean 
outcome trends for units with the same val-
ues for ​​Z​j​​​.

Abadie, Diamond, and Hainmueller (2010) 
provide a characterization of the bias of the 
synthetic control estimator for the case when 
the synthetic control reproduces the charac-
teristics of the treated unit. Let ​​X​1​​​ be the vec-
tor that includes ​​Z​1​​​ and the pre-intervention 
outcomes for the treated unit, and 
let ​​X​0​​​ be the matrix that collects the same 
variables for the untreated units. Suppose 
that ​​X​1​​ = ​X​0​​ ​W​​ ⁎​​, that is, the synthetic con-
trol represented by ​​W​​ ⁎​​, is able to repro-
duce the characteristics of the treated unit 
(including the values of the pre-intervention 

outcomes). Then the bias of ​​​τ ˆ ​​it​​​ is controlled 
by the ratio between the scale of the indi-
vidual transitory shocks, ​​ε​it​​​, and the number 
of pre-intervention periods, ​​T​0​​​. The intu-
ition behind this result is rather immediate. 
Under the factor model in equation (10), a 
synthetic control that reproduces the val-
ues ​​Z​1​​​ and ​​μ​1​​​ would provide an unbiased 
estimator of the treatment effect for the 
treated. If ​​X​1​​ = ​X​0​​ ​W​​ ⁎​​, then the synthetic 
control matches the value of ​​Z​1​​​. On the 
other hand, ​​μ​1​​​ is not observed, so it cannot 
be matched directly in the data. However, 
a synthetic control that reproduces the val-
ues of ​​Z​1​​​ but fails to reproduce the values 
of ​​μ​1​​​ can only provide a close match for 
the pretreatment outcomes if differences 
in the values of the individual transitory 
shocks between the treated and the syn-
thetic controls compensate for the differ-
ences in unobserved factor loadings. This 
is unlikely to happen when the scale of the 
transitory shocks, ​​ε​it​​​, is small or the num-
ber of pretreatment periods, ​​T​0​​​, is large. In 
contrast, a small number of pre-intervention 
periods combined with enough variation in 
the unobserved transitory shocks may result 
in a close match for pretreatment outcomes 
even if the synthetic control does not closely 
match the values of ​​μ​1​​​. This is a form of 
over-fitting and a potential source of bias.

In practice, the condition ​​X​1​​ = ​X​0​​ ​W​​ ⁎​​  
is replaced by the approximate ver-
sion ​​X​1​​ ≈ ​X​0​​​W​​ ⁎​​. It is important to notice, 
however, that for any particular data set there 
are not ex ante guarantees on the size of the 
difference ​​X​1​​ − ​X​0​​ ​W​​ ⁎​​. When this difference 
is large, Abadie, Diamond, and Hainmueller 
(2010) recommend against the use of syn-
thetic controls because of the potential for 
substantial biases. For the factor model in 
equation (10), obtaining a good fit ​​X​1​​ ≈ ​X​0​​ ​W​​ ⁎​​ 
when ​​X​1​​​ and ​​X​0​​​ include pre-intervention 
outcomes typically requires that the vari-
ance of the transitory shock is small (see 
Ferman and Pinto 2019). Moreover, because 
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the bias bound depends inversely on ​​T​0​​​, 
one could erroneously conclude that under 
the factor model in equation (10), the syn-
thetic control estimator is unbiased as ​​T​0​​​ 
goes to infinity. However, the bias bound in 
Abadie, Diamond, and Hainmueller (2010) 
is derived under ​​X​1​​ = ​X​0​​ ​W​​ ⁎​​, and its practi-
cal relevance depends on the ability of the 
synthetic control to reproduce the trajectory 
of the outcome for the treated unit. Sizable 
biases may persist as ​​T​0​​ → ∞​, unless the 
quality of the fit, ​​X​1​​ − ​X​0​​ ​W​​ ⁎​​, is good. That is, 
the ability of a synthetic control to reproduce 
the trajectory of the outcome variable for the 
treated unit over an extended period of time, 
as in figure 1 panel B, provides an indication 
of low bias. However, a large ​​T​0​​​ cannot drive 
down the bias if the fit is bad. In practice, 
synthetic controls may not perfectly fit the 
characteristics of the treated units. Section 7 
discusses a backdating exercise that can 
often be used to obtain an indication of the 
size and direction of the bias arising from 
imperfect fit.

The risk of over-fitting may also increase 
with the size of the donor pool, especially 
when ​​T​0​​​ is small. For any fixed ​​T​0​​​, a larger ​J​ 
makes it easier to fit pretreatment outcomes 
even when there are substantial discrepan-
cies in factor loadings between the treated 
unit and the synthetic control. Consistent 
with this argument, the bias bound 
for ​​​τ ˆ ​​1t​​​ derived in Abadie, Diamond, and 
Hainmueller (2010) depends positively on ​J​. 
Under a factor model for ​​Y​ it​ N​​, a large num-
ber of units in the donor pool may create or 
exacerbate the bias of the synthetic control 
estimator, especially if the values of ​​μ​j​​​ in the 
donor pool greatly differ from ​​μ​1​​​.9 Moreover, 
the factor model in equation (10) should be 
interpreted only as an approximation to a 

9 A large ​J​ may be beneficial in high-dimensional set-
tings, as demonstrated in Ferman (2019), who shows that 
under certain conditions synthetic control estimators may 
asymptotically unbiased as ​​T​0​​ → ∞​ and ​J → ∞​.

more general (nonlinear) process for ​​Y​ it​ N​​. If 
the process that determines ​​Y​ it​ N​​ is nonlinear 
in the attributes of the units, even a close fit 
by a synthetic control, which is a weighted 
average, could potentially result in large 
interpolation biases. 

A practical implication of the discussion 
in the previous paragraph is that each of the 
units in the donor pool have to be chosen judi-
ciously to provide a reasonable control for the 
treated unit. Including in the donor pool units 
that are regarded by the analyst to be unsuit-
able controls (because of large discrepancies 
in the values of their observed attributes ​​Z​j​​​ or 
because of suspected large differences in the 
values of the unobserved attributes ​​μ​j​​​ relative 
to the treated unit) is a recipe for bias.

There are other factors that contribute 
to the bias bound in Abadie, Diamond, and 
Hainmueller (2010). In particular, the value 
of the bound increases with the number on 
unobserved factors, that is, the number of 
components in ​​μ​j​​​. The dependence of the 
bias bound on the number of unobserved 
factors is relevant for the discussion on the 
choice of predictors for the synthetic control 
method in the next subsection.

3.4	 Variable Selection

A synthetic control provides a predic-
tor of ​​Y​ 1t​ N ​​ for ​t > ​T​0​​​, the potential outcome 
without the intervention for the treated units 
in a post-intervention period. Like for any 
other prediction procedure, the choice of 
predictors (in ​​X​1​​​ and ​​X​0​​​ for synthetic con-
trol estimators) is a fundamental part of the 
estimation task. This subsection discusses 
variable selection in the synthetic control 
method. To aid the discussion of the differ-
ent issues involved in variable selection for 
synthetic controls, I will employ the con-
cepts and notation of the linear factor model 
framework of subsection 3.3. Predictor vari-
ables in ​​X​1​​​ and ​​X​0​​​ typically include both 
pre-intervention values of the outcome vari-
able as well as other predictors, ​​Z​j​​​.
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Pre-intervention values of the outcome 
variable, which are naturally available in panel 
data settings, play a crucial role in reproduc-
ing the unobserved factor loadings in ​​μ​j​​​ in 
the linear factor model of subsection 3.3. 
They also arise organically as predictors for 
the synthetic control estimators under a vec-
tor autoregression model for the process that 
generates the data (see Abadie, Diamond, 
and Hainmueller 2010). The credibility of 
a synthetic control estimator depends on its 
ability to track the trajectory of the outcome 
variable for the treated unit for an extended 
pre-intervention period. Provided that a good 
fit for pre-intervention outcomes is attained, 
the researcher has some flexibility in the 
way pre-intervention outcomes are incor-
porated in ​​X​1​​​ and ​​X​0​​​. Consider the German 
reunification application of subsection 3.2. 
As reported in table 1, the set of predictors 
in ​​X​1​​​ and ​​X​0​​​ includes average per capita GDP 
in 1981–90, and no other pre-intervention 
outcome. Notice, however, that the resulting 
synthetic control is able to track the trajectory 
of per capita GDP for West Germany for the 
entire 1960–90 pre-intervention period. This 
happens because per capita GDP figures for 
OECD countries strongly co-move in time 
across countries. This co-movement of the 
outcome variable of interest across the differ-
ent units in the data is exactly what synthetic 
controls are designed to exploit. It makes 
it possible to match the entire trajectory of 
GDP per capita for West Germany by fitting 
only the average level of GDP per capita in 
the 1981–90 period. Given this premise, one 
potential advantage from using a summary 
measure of prereunification GDP per capita 
to calculate the synthetic control for West 
Germany (as opposed to, say, including all 
ten different annual values of GDP per capita 
for 1981–90 as predictors) resides in a higher 
sparsity of the resulting synthetic control. As 
will be discussed in section 4 below, the num-
ber of units in the donor pool that carry posi-
tive weights in a synthetic control estimator is 

controlled by the number of predictors in ​​X​1​​​ 
and ​​X​0​​​, and sparse synthetic controls (that is, 
synthetic controls made of a small number of 
comparison units) are easy to interpret and 
evaluate.

Part of the literature on synthetic controls 
emphasizes estimators that depend only on 
pre-intervention outcomes and ignore the 
information of other predictors, ​​Z​j​​​. This 
reliance on pre-intervention outcomes only, 
while adopted in many cases for technical 
or expositional convenience, may create the 
mistaken impression that other predictors 
play a minor role in synthetic control estima-
tors. Notice, however, that in equation (10), 
covariates excluded from ​​Z​j​​​ are mechanically 
absorbed into ​​μ​j​​​, which increases the num-
ber of components of ​​μ​j​​​ and, therefore, the 
bound on the bias as discussed in the pre-
vious subsection. By excluding ​​Z​j​​​ from the 
set of predictors in ​​X​1​​​ and ​​X​0​​​, not only do 
we aim to implicitly match the values of ​​μ​j​​​ 
through their effects on the pre-intervention 
outcomes, but also the values of ​​Z​j​​​.

Data-driven methods for variable selec-
tion evaluate the predictive power of alter-
native sets of predictors. This can be done 
in the synthetic control method framework 
by measuring the predictive power of alter-
native sets of variables. The procedure 
divides the pre-intervention periods into 
an initial training period and a subsequent 
validation period. Synthetic control weights 
are computed using data from the training 
period only. The validation period can then 
be used to evaluate the predictive power of 
the resulting synthetic control. This proce-
dure can be used to select predictors or to 
evaluate the predictive power of a given set 
of predictors as in section 7. Section 7 dis-
cusses how to assess the robustness of the 
results to alternative sets of predictors.

Finally, it is worth noting that post- 
intervention outcomes are not used in the 
calculation of synthetic control weights. This 
property of synthetic control methods can be 
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exploited to provide guarantees against the 
use of results to guide specification searches. 
This is because synthetic control weights can 
be calculated using pre-intervention data 
only in the design phase of the study, before 
post-intervention outcomes are observed 
or realized. Section 4 discusses this issue in 
more detail.

3.5	 Inference

Abadie, Diamond, and Hainmueller 
(2010) propose a mode of inference for the 
synthetic control framework that is based on 
permutation methods. In its simpler version, 
the effect on the intervention is estimated 
separately for each of the units in the sample. 
Consider the case with a single treated unit, 
as in subsection 3.1. A permutation distribu-
tion can be obtained by iteratively reassign-
ing the treatment to the units in the donor 
pool and estimating “placebo effects” in each 
iteration. Then, the permutation distribution 
is constructed by pooling the effect estimated 
for the treated unit together with placebo 
effects estimated for the units in the donor 
pool. The effect of the treatment on the unit 
affected by the intervention is deemed sig-
nificant when its magnitude is extreme rela-
tive to the permutation distribution.

One potential complication with this pro-
cedure is that, even if a synthetic control is 
able to closely fit the trajectory of the out-
come variable for the treated unit before the 
intervention, the same may not be true for all 
the units in the donor pool. For this reason, 
Abadie, Diamond, and Hainmueller (2010) 
propose a test statistic that measures the 
ratio of the post-intervention fit relative to 
the pre-intervention fit. For ​0 ≤ ​t​1​​ ≤ ​t​2​​ ≤ T​ 
and ​j = ​{1, … , J + 1}​​, let

(11) ​​ R​j​​​(​t​1​​, ​t​2​​)​ 

= ​​(​  1 _ 
​t​2​​ − ​t​1​​ + 1

 ​ ​ ∑ 
t=​t​1​​

​ 
​t​2​​

 ​​​​ (​Y​jt​​ − ​​Y ˆ ​​ jt​ N​)​​​ 
2
​)​​​ 

1/2

​,​

where ​​​Y ˆ ​​ jt​ N​​ is the outcome on period ​t​ pro-
duced by a synthetic control when unit ​j​ is 
coded as treated and using all other ​J​ units 
to construct the donor pool. This is the root 
mean squared prediction error (RMSPE) 
of the synthetic control estimator for 
unit ​j​ and time periods ​​t​1​​, … , ​t​2​​​. The ratio 
between the post-intervention RMSPE and 
pre-intervention RMSPE for unit ​j​ is

(12)	​​ r​j​​  = ​ 
​R​j​​​(​T​0​​ + 1, T)​

 ___________ 
​R​j​​​(1, ​T​0​​)​

 ​ .​

That is, ​​r​j​​​ measures the quality of the 
fit of a synthetic control for unit ​j​ in the 
posttreatment period, relative to the quality 
of the fit in the pretreatment period. Abadie, 
Diamond, and Hainmueller (2010) use the 
permutation distribution of ​​r​j​​​ for inference. 
An alternative solution to the problem of poor 
pretreatment fit in the donor pool is to base 
inference on the distribution ​​R​j​​​(​T​0​​ + 1, T)​​ 
after discarding those placebo runs with 
​​R​j​​​(1, ​T​0​​)​​ substantially larger than ​​R​1​​​(1, ​T​0​​)​​  
(see Abadie, Diamond, and Hainmueller 
2010).

A ​p​-value for the inferential procedure 
based on the permutation distribution of ​​r​j​​​, 
as described above, is given by

	​ p  = ​   1 _ 
J + 1

 ​ ​ ∑ 
j=1

​ 
J+1

​​ ​I​+​​​(​r​j​​ − ​r​1​​)​,​

where ​​I​+​​​( ⋅ )​​ is an indicator function that 
returns one for nonnegative arguments and 
zero otherwise. While ​p​-values are often 
used to summarize the results of testing 
procedures, the permutation distribution 
of the test statistics, ​​r​j​​​, or of the placebo 
gaps, ​​Y​jt​​ − ​​Y ˆ ​​ jt​ N​​, are easy to report/visualize 
and provide additional information on (e.g., 
on the magnitude of the differences between 
the estimated treatment effect on the treated 
unit and the placebo gaps in the donor pool). 
Confidence intervals can be constructed by 
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test inversion (see, e.g., Firpo and Possebom 
2018).

Replacing ​​Y​jt​​ − ​​Y ˆ ​​ jt​ N​​ in ​R​(​T​0​​ + 1, T)​​ with 
their positive or negative parts, ​​​(​Y​jt​​ − ​​Y ˆ ​​ jt​ N​)​​​ 

+​​ 
or ​​​(​Y​jt​​ − ​​Y ˆ ​​ jt​ N​)​​​ 

−
​​, leads to one-sided infer-

ence. One-sided inference may result in 
a substantial of gain of power.10 This is an 
important consideration in many compara-
tive case study settings, where samples are 
considerably small. Alternative test statistics 
(see, e.g., Firpo and Possebom 2018) could 
potentially be used to direct power to spe-
cific sets of alternatives.

As discussed in Abadie, Diamond, and 
Hainmueller (2010) this mode of inference 
reduces to classical randomization inference 
(Fisher 1935) when the intervention is ran-
domly assigned, a rather improbable setting, 
especially in contexts with aggregate units. 
More generally, this mode of inference eval-
uates significance relative to a benchmark 
distribution for the assignment process, one 
that is implemented directly in the data. 
Abadie, Diamond, and Hainmueller (2010) 
use a uniform benchmark, but one could eas-
ily depart from the uniform case. Firpo and 
Possebom (2018) propose a sensitivity analy-
sis procedure that considers deviations from 
the uniform benchmark.

Because in most observational settings 
assignment to the intervention is not ran-
domized, one could, in principle, adopt 
permutation schemes that incorporate infor-
mation in the data on the assignment prob-
abilities for the different units in the sample 
(as in, e.g., Rosenbaum 1984). However, 
in many comparative case studies it is dif-
ficult to articulate the nature of a plausible 
assignment mechanism or even the specific 

10 Notice that, in the presence of a treatment effect on 
the treated unit, permutations in which the treated unit 
contributes to the placebo synthetic control will tend to 
produce effects of the opposite sign to the effect on the 
treated unit, increasing the power of the one-sided test.

nature of a placebo intervention. Consider, 
for example, the 1990 German reunifica-
tion application in Abadie, Diamond, and 
Hainmueller (2015). In that context, it would 
be difficult to articulate the nature of the 
assignment mechanism or even describe pla-
cebo interventions. (France would reunify 
with whom?) Moreover, even if a plausible 
assignment mechanism exists, estimation of 
the assignment mechanism is often hope-
less because many comparative case studies 
feature a single or a small number of treated 
units. 

It is important to note that the availabil-
ity of a well-defined procedure to select 
the comparison unit, like the one provided 
by the synthetic control method, makes the 
estimation of the effects of placebo inter-
ventions feasible. Without a formal descrip-
tion of the procedure used to choose the 
comparison for the treated unit, it would be 
difficult to reapply the same estimation pro-
cedure to the units in the donor pool. In this 
sense, the formalization of the choice of the 
comparison unit provided by the synthetic 
control method opens the door to a mode of 
quantitative inference in the context of com-
parative case studies.

Another important point to notice is that 
the permutation method described in this 
subsection does not attempt to approximate 
the sampling distributions of test statis-
tics. Sampling-based statistical tests employ 
restrictions on the sampling mechanism 
(data-generating process) to derive a distribu-
tion of a test statistic in a thought experiment 
where alternative samples could have been 
obtained from the sampling mechanism that 
generated the data. In a comparative case 
study framework, however, sampling-based 
inference is complicated—sometimes 
because of the absence of a well-defined 
sampling mechanism or data-generating 
process, and sometimes because the sample 
is the same as the population. For example, 
in their study of the effect of terrorism on 
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economic outcomes in Spain, Abadie and 
Gardeazabal (2003) employ a sample con-
sisting of all Spanish regions. Here, sampling 
is not done at random from a well-defined 
super-population. As in classical randomiza-
tion tests (Fisher 1935), design-based infer-
ence takes care of these complications by 
conditioning on the sample and considering 
only the variation in the test statistic that is 
induced by the assignment mechanism (see, 
e.g., Abadie et al. 2020).11

4.  Why Use Synthetic Controls? 

In this section, I will describe some advan-
tages of synthetic control estimators rela-
tive to alternative methods. For the sake of 
concreteness and because linear regression 
is arguably the most widely applied tool in 
empirical research in economics, I emphasize 
the differences between synthetic control 
estimators and linear regression estimators. 
However, much of the discussion applies 
more generally to other estimators of treat-
ment effects.

A linear regression estimator of the 
effect of the treatment can easily be con-
structed using the panel data structure 
described in subsection 3.1. Let ​​Y​0​​​ be the ​​
(T − ​T​0​​)​ × J​ matrix of post-intervention out-
comes for the units in the donor pool with 
​​(t, j)​​-element equal to ​​Y​​T​0​​+t,J+1​​​. Let ​​​X 

–
 ​​1​​​  

and ​​​X 
–
 ​​0​​​ be the result of augmenting ​​X​1​​​ 

and ​​X​0​​​, respectively, with a row of ones. For 
non-singular ​​​X 

–
 ​​0​​ ​​​​X 

–
 ​​ 0​ ′ ​​, a regression-based esti-

mator of the counterfactual ​​Y​ 1t​ N ​​ for ​t > ​T​0​​​ is ​​​
B ˆ ​ ′ ​ ​​X 

–
 ​​1​​​, where ​​B ˆ ​ = ​​(​​X 

–
 ​​0​​ ​​X 

–
 ​​ 0​ ′ ​)​​​ −1​ ​​X 

–
 ​​0​​ ​Y​ 0​ ′ ​​. That is, 

the regression-based estimator is akin to a 
synthetic control, as it uses a linear combi-
nation, ​​Y​0​​ ​W​​ reg​​, of the outcomes in the 
donor pool, with ​​W​​ reg​ = ​​X 

–
 ​​ 0​ ′ ​ ​​(​​X 

–
 ​​0​​ ​​X 

–
 ​​ 0​ ′ ​)​​​ −1​ ​​X 

–
 ​​1​​​, to 

11 In particular, this is in contrast to the bias bound cal-
culations in Abadie, Diamond, and Hainmueller (2010), 
which are performed over the distribution of the individual 
transitory shocks, ​​ε​it​​​.

reproduce the outcome of the treated unit 
in the absence of the intervention. Some 
advantages of synthetic controls relative to 
regression-based counterfactual are listed 
next.

No Extrapolation. Synthetic control esti-
mators preclude extrapolation, because syn-
thetic control weights are nonnegative and 
sum to one. It is easy to check that, like their 
synthetic control counterparts, the regres-
sion weights in ​​W​​ reg​​ sum to one. Unlike 
the synthetic control weights, however, 
regression weights may be outside the ​​[0, 1]​​ 
interval, allowing extrapolation outside of the 
support of the data (see Abadie, Diamond, 
and Hainmueller 2015 for details).12 Table 3 
reports regression weights for the German 
reunification example. In this application, 
the regression counterfactual utilizes nega-
tive values for four countries.

Transparency of the Fit. Linear regres-
sion uses extrapolation to guarantee a 
perfect fit of the characteristics of the 
treated unit, ​​​X 

–
 ​​0​​ ​W​​ reg​  = ​​ X 

–
 ​​1​​​ (and, there-

fore, ​​X​0​​ ​W​​ reg​ = ​X​1​​​) even when the untreated 
units are completely dissimilar in their char-
acteristics to the treated unit. In contrast, 
synthetic controls make transparent the 
actual discrepancy between the treated unit 
and the convex combination of untreated 
units that provides the counterfactual of 
interest, ​​X​1​​ − ​X​0​​ ​W​​ ⁎​​. This discrepancy is 
equal to the difference between columns 1 
and 2 in table 1. In addition figure 1, panel B, 
brings to light the fit of a synthetic control in 
terms of pre-intervention outcomes. That is, 
the information in table 1 and figure 1 makes 
clear the extent to which the observations in 
the donor pool can approximate the char-
acteristics of the treated units by interpola-
tion only. In some applications, comparisons 

12 See King and Zeng (2006) on the dangers of relying 
on extrapolation to estimate counterfactuals.
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like that of columns 1 and 2 of table 1 may 
reveal that it is not possible to approximate 
the characteristics of the treated unit(s) 
using a weighted average of the units in the 
donor pool. In that case, Abadie, Diamond, 
and Hainmueller (2010, 2015) advise against 
using synthetic controls.

Safeguard against Specification Searches. 
In contrast to regression but similar to clas-
sical matching methods, synthetic controls 
do not require access to posttreatment out-
comes in the design phase of the study, when 
synthetic controls are calculated. This implies 
that all the data analysis on design decisions 
like the identity of the units in the donor 
pool or the predictors in ​​X​1​​​ and ​​X​0​​​ can be 
made without knowing how they affect the 
conclusions of the study (see Rubin 2007 for 
a related discussion regarding matching esti-
mators). Moreover, synthetic control weights 
can be calculated and preregistered/pub-
licized before the posttreatment outcomes 
are realized, or before the actual interven-
tion takes place. That is, preregistration of 

synthetic control weights can play a role 
similar to pre-analysis plans in randomized 
control trials (see, e.g., Olken 2015), provid-
ing a safeguard against specification searches 
and ​p​-hacking.

Transparency of the Counterfactual. 
Synthetic controls make explicit the 
contribution of each comparison unit to 
the counterfactual of interest. Moreover, 
because the synthetic control coefficients 
are proper weights and are sparse (more on 
sparsity below), they allow a simple and pre-
cise interpretation of the nature of the esti-
mate of the counterfactual of interest. For 
the application to the effects of the German 
reunification in table 2, the counterfactual 
for West Germany is given by a weighted 
average of Austria (0.42), Japan (0.16), the 
Netherlands (0.09), Switzerland (0.11), and 
the United States (0.22) with weights in 
parentheses. Simplicity and transparency 
of the counterfactual allows the use of the 
expert knowledge to evaluate the validity 
of a synthetic control and the directions of 

TABLE 3 
Regression Weights for West Germany

Australia 0.12
Austria 0.26
Belgium 0.00
Denmark 0.08
France 0.04
Greece −0.09
Italy −0.05
Japan 0.19
Netherlands 0.14
New Zealand 0.12
Norway 0.04
Portugal −0.08
Spain −0.01
Switzerland 0.05
United Kingdom 0.06
United States 0.13
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potential biases. For instance, smaller neigh-
boring countries to West Germany, such as 
Austria, the Netherlands, and Switzerland, 
have a substantial weight on the compo-
sition of the synthetic control of table 2. If 
economic growth in these countries were 
negatively affected by the German reunifica-
tion during the 1990–2003 period (perhaps 
because West Germany diverted demand 
and investment from these countries to East 
Germany), this would imply that figure  1, 
panel  B, estimates a lower bound on the 
magnitude (absolute value) of the negative 
effect of the German reunification on per 
capita GDP in West Germany.

Sparsity. As evidenced in the results of 
tables 2 and 3, synthetic controls are sparse, 
but regression weights are not. As discussed 

above, sparsity plays an important role for 
the interpretation and evaluation of the 
estimated counterfactual. The sparsity of 
synthetic control weights has an immediate 
geometric interpretation. Assume, for now, 
that ​​X​1​​​ falls outside the convex hull of the 
columns of ​​X​0​​​. This is typical in empirical 
practice and a consequence of the curse of 
dimensionality. Assume also that the columns 
of ​​X​0​​​ are in general position (that is, there 
is no set of ​m​ columns, with ​2 ≤ m ≤ k + 1​, 
that fall into an ​​(m − 2)​​-dimensional hyper-
plane). Then, the synthetic control is unique 
and sparse—with the number of nonzero 
weights bounded by ​k​—as it is the projection 
of ​​X​1​​​ on the convex hull of the columns of ​​X​0​​​. 
Figure 2 provides a visual representation of 
the geometric interpretation of the sparsity 
property of synthetic control estimators. 

X1

X0W*

Figure 2. Projecting ​​X​1​​​ on the Convex Hull of ​​X​0​​​
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Only the control observations marked in red 
contribute to the synthetic control.

Notice that table 1 indicates that the syn-
thetic control for West Germany falls close 
to but outside the convex hull of the values 
of economic growth predictors in the donor 
pool (otherwise, columns 1 and 2 would be 
identical). As a result, the number of nonzero 
weights in table 2 is not larger than the num-
ber of variables in table 1. If desired, spar-
sity can be increased by imposing a bound 
on the density (number of nonzero weights) 
of ​​W​​ ⁎​​ in the calculation of synthetic controls 
(see Abadie, Diamond, and Hainmueller 
2015).

In some cases, especially in applications 
with many treated units, the values of the 
predictors for some of the treated units may 
fall in the convex hull of the columns of ​​X​0​​​. 
Then, synthetic controls are not necessarily 
unique or sparse. That is, a minimizer of 
equation (7) may not be unique or sparse, 
although sparse solutions with no more 
than ​k + 1​ nonzero weights always exist. A 
question is then how to choose among the 
typically infinite number of solutions to the 
minimization of equation (7). A modification 
of the synthetic control estimator in Abadie 
and L’Hour (2019) discussed in section  8 
addresses this problem and produces syn-
thetic controls that are unique and sparse 
(provided that untreated observations are 
in general quadratic position, see Abadie 
and L’Hour 2019 for details). In contrast, as 
shown in table 3, regression estimators are 
typically not sparse.

It is important to notice that the role of 
sparsity in the context of synthetic control 
methods differs from the usual role that spar-
sity plays in other statistical methods like the 
lasso, where a sparsity-inducing regulariza-
tion is employed to prevent over-fitting, and 
where the interpretation of the lasso coeffi-
cients is often not at issue. Like for the lasso, 
the goal of synthetic controls is out-of-sample 
prediction; in particular, prediction of ​​Y​ 1t​ N ​​ 

for ​t > ​T​0​​​. In contrast to the lasso, however, 
the identity and magnitude of nonzero coef-
ficients constitute important information to 
interpret the nature of the estimate and eval-
uate its validity and the potential for biases.

One of the greatest appeals of the syn-
thetic control method resides, in my opinion, 
in the interpretability of the estimated coun-
terfactuals, which results from the weighted 
average nature of synthetic control estima-
tors and from the sparsity of the weights.

Despite the practical advantages of syn-
thetic control methods, successful applica-
tion of synthetic control estimators crucially 
depends on important contextual and data 
requirements, which are discussed in the 
next two sections.

5.  Contextual Requirements

This section will discuss contextual 
requirements, that is, the conditions on the 
context of the investigation under which 
synthetic controls are appropriate tools for 
policy evaluation, as well as suitable ways to 
modify the analysis when these conditions do 
not perfectly hold. It is important, however, 
to point out that most of the requirements 
listed in this section pertain not only to syn-
thetic control methods, but also to any other 
type of comparative case study research 
design.

Size of the Effect and Volatility of the 
Outcome. As previously discussed, the goal 
of comparative case studies is to estimate 
the effect of a policy intervention on the unit 
(e.g., state or region) exposed to an interven-
tion of interest. That is, comparative case 
studies typically estimate the effect of an 
intervention on a single treated unit or on a 
small number of treated units. The nature of 
this exercise indicates that small effects will 
be indistinguishable from other shocks to 
the outcome of the affected unit, especially 
if the outcome variable of interest is highly 
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volatile.13 As a result, the impact of “small” 
interventions with effects of a magnitude 
similar to the volatility of the outcome are 
difficult to detect. Even a large effect may be 
difficult to detect if the volatility of the out-
come is also large. Outcome variables that 
include substantial random noise elevate the 
risk of over-fitting, as explained in subsec-
tion 3.3. In cases where substantial volatil-
ity is present in the outcome of interest it is 
advisable to remove it via filtering, in both 
the exposed unit as well as in the units in the 
donor pool, before applying synthetic control 
techniques.14 Notice, however, that the chal-
lenge posed by volatility comes only from the 
fraction of it that is generated by unit-specific 
factors (e.g., the individual-specific transi-
tory shocks, ​​ε​jt​​​, in equation (10)). Volatility 
generated by common factors affecting other 
units (e.g., the common factors ​​λ​t​​​ in equa-
tion (10)) can be differentiated out by choos-
ing an appropriate synthetic control.

Availability of a Comparison Group. 
The very nature of comparative case stud-
ies implies that inference based on these 
methods will be faulty in the absence of a 
suitable comparison group. First and fore-
most, in order to have units available for 
the donor pool, it is important that not all 
units adopt interventions similar to the one 
under investigation during the period of the 
study. Units that adopt an intervention simi-
lar to the one adopted by the unit of interest 
should not be included in the donor pool 
because they are affected by the interven-
tion, very much like the unit of interest. It is 

13 In studies that seek to estimate the average effect 
of an intervention that is observed in a large number of 
instances, the volatility of the outcome variable can often 
be reduced by averaging. In contrast, as explained above, 
comparative case studies often focus on the effect of a sin-
gle event or intervention.

14 For example, Amjad, Shah, and Shen (2018) propose 
singular value thresholding to de-noise data for synthetic 
controls.

also important to eliminate from the donor 
pool any units that may have suffered large 
idiosyncratic shocks to the outcome of inter-
est during the study period, if it is judged 
that such shocks would not have affected 
the outcome of the unit of interest in the 
absence of the intervention.15 Moreover, it 
is important to restrict the donor pool to 
units with characteristics that are similar to 
the affected unit. The reason is that, while 
the restrictions placed on the weights, ​W​, do 
not allow extrapolation, interpolation biases 
may still be important if the synthetic 
control matches the characteristics of 
the affected unit by averaging away large 
discrepancies between the characteristics 
of the affected unit and the characteristics 
of the units in the synthetic control. For 
the German reunification example, Abadie, 
Diamond, and Hainmueller (2015) restrict 
the donor pool to a set of OECD econ-
omies. Related to this point, Abadie and 
L’Hour (2019) propose adding to the objec-
tive function in equation (7) a set of pen-
alty terms that depend on the discrepancies 
between the characteristics of the affected 
unit and the characteristics of the individual 
units included in the synthetic control (see 
section 8 for details).

No Anticipation. As in any research 
design that exploits time variation in the 
outcome variable to estimate the effect of 
an intervention, synthetic control estimators 
may be biased if forward-looking economic 
agents react in advance of the policy inter-
vention under investigation, or if certain 
components of the intervention are put in 
place in advance of the formal implementa-
tion/enactment of the intervention. If there 

15 As an example, in their study of the effect of 
California’s tobacco control legislation, Abadie, Diamond, 
and Hainmueller (2010) discard from the donor pool sev-
eral states that adopted large-scale tobacco programs or 
substantially increased taxes on tobacco during the sample 
period of the study.
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are signs of anticipation, it is advisable to 
backdate the intervention in the data set to 
a period before any anticipation effect can 
be expected, so the full extent of the effect 
of the intervention can be estimated. Notice 
that backdating the intervention in the data 
does not mechanically bias the estimator of 
the effect of the intervention even if some 
periods before the intervention are mistak-
enly recorded as post-intervention periods. 
The reason is that, as shown in equations 
(2) and (3), the synthetic control estima-
tor does not restrict the time variation in 
the effect of the intervention. Therefore, 
periods barely affected by the interven-
tion may show small or zero effects, while 
subsequent periods may produce a large 
estimated effect. This is in contrast with 
much of the practice using panel data mod-
els, where in many instances the effect of 
an intervention is restricted to be constant 
across post-intervention periods.

No Interference. In the setup of subsection 
3.1, we defined the potential outcomes ​​Y​ 1t​ I ​​ and 
​​Y​ it​ N​​ only in terms of the treatment status for 
unit 1 and unit ​i​, respectively, at time ​t​. This 
is the stable unit treatment value assumption 
in Rubin (1980), which implies that there is 
no interference across units. That is, units’ 
outcomes are invariant to other units’ treat-
ments. In some instances, however, an inter-
vention may have spillover effects on units 
that are not directly targeted by it. Assuming 
that such spillover effects do not exist is a 
strong restriction that must often be enforced 
in the design of the study or accounted for in 
the analysis of the results.

The assumption of no interference can 
be enforced in the design of a study by dis-
carding from the donor pool those units with 
outcomes possibly affected by the interven-
tion on the treated unit. Notice that there 
is a potential tension between this practice 
and the issues discussed in Availability of a 
Comparison Group. On the one hand, it is 

advisable to select for the donor pool units 
that are affected by the same regional eco-
nomic shocks as the unit where the interven-
tion happens. On the other hand, if spillover 
effects are substantial and affect units in close 
geographical proximity, those units may pro-
vide a biased estimate of the counterfactual 
outcome without intervention for the unit 
affected by the intervention. In cases when 
units potentially affected by spillover effects 
are discarded from the donor pool, the trans-
parency of the fit of synthetic controls allows 
researchers to evaluate the reduction in the 
quality of the match between the character-
istics of the treated unit and the characteris-
tics of the synthetic control.

Potential spillover effects can also be 
accounted for in the analysis phase of a 
synthetic control study. If units affected by 
spillover effects are included in the synthetic 
control, the researcher should be aware 
of the potential direction of the bias of the 
resulting estimator. For example, Abadie, 
Diamond, and Hainmueller (2015) estimate 
the economic impact of the 1990 German 
reunification using a synthetic control of 
other OECD countries to approximate the 
trajectory of the counterfactual per capita 
GDP for West Germany in the absence of 
the unification. As explained above, if coun-
tries that compose the synthetic control for 
West Germany, like Austria, suffered from 
the negative effects of the German reunifi-
cation, then we would expect the synthetic 
control estimator to be attenuated. That is, 
in this case, the synthetic control estimate 
would provide a lower bound on the mag-
nitude of the causal effect of the German 
reunification on GDP per capita in West 
Germany. Notice that it is the transparency 
of the counterfactual and sparsity of the syn-
thetic control counterfactual estimate that 
makes this exercise possible. In regression 
settings, like the one in section 4, the weight 
of each unit in the counterfactual estimate 
is rarely computed in empirical practice, and 
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non-sparse weight vectors often including 
negative components complicate the evalu-
ation of potential biases.

Convex Hull Condition. Synthetic control 
estimates are predicated on the idea that a 
combination of unaffected units can approx-
imate the pre-intervention characteristics of 
the affected unit. Once the synthetic control 
is constructed, it should be checked that 
the differences in the characteristics of the 
affected unit and the synthetic control are 
small, that is:

	​​ X​11​​ − ​w​2​​ ​X​12​​ − ⋯ − ​w​J​​ ​X​1J+1​​ ≈ 0, ⋯,

	​ X​k1​​ − ​w​2​​ ​X​k2​​ − ⋯ − ​w​J​​ ​X​kJ+1​​ ≈ 0.​

In mathematical parlance, we need  ​​
(​X​11​​, ​X​21​​, … , ​X​k1​​)​​ to fall close to the convex 
hull of the set of points ​​{​(​X​12​​, ​X​22​​, … , ​X​k2​​)​, … , ​

(​X​1J+1​​, ​X​2J+1​​, … , ​X​kJ+1​​)​}​​. If the unit affected 
by the intervention of interest is “extreme” 
in the value of a particular variable, such a 
value may not be closely approximated by a 
synthetic control.16

The fact that the value of a particular pre-
dictor for the treated unit cannot be closely 
approximated by the synthetic control may 
be less of a concern if the synthetic control 
closely tracks the trajectory of the outcome 
variable for the unit affected by the inter-
vention during a hold-out validation period. 
In some cases, however, the unit affected by 
the intervention of interest may be extreme 
in the values of the outcome variable before 
the intervention and, as a result, there will 
not be a weighted average of untreated units 
that can approximate the trajectory of the 
outcome variable for the treated unit before 

16 For example, Abadie, Diamond, and Hainmueller 
(2015) find that because inflation levels were particularly 
low for West Germany before the reunification, the value 
of this variable cannot be closely reproduced by a synthetic 
control composed by other OECD countries. See table 1.

the intervention. A potential way to proceed 
in those cases is to transform the outcome 
to time differences, ​Δ​Y​jt​​​ = ​​Y​jt​​ − ​Y​jt−1​​​, or 
growth rates, ​100 × Δ​Y​jt​​ / ​Y​jt−1​​​. Similarly, 
one could measure outcomes in differences 
with respect to pre-intervention means, 

​​​Y ̃ ​​jt​​ = ​Y​jt​​ − ​(1/​T​0​​)​​∑ h=1​ 
​T​0​​ ​​​ Y​jh​​​ (Ferman and Pinto 

2019). Consider the particular case where a 
synthetic control is calculated on the basis 
of all pre-intervention outcomes (equally 
weighted). That is, each of the ​​T​0​​​ rows 
of ​​X​1​​​ and ​​X​0​​​ contains the outcome val-
ues in one of the pre-intervention periods 
for the treated unit and the donor pool, 
respectively, and all pre-intervention peri-
ods carry the same weight in the calcu-
lation of the synthetic control. For this 
particular case, measuring the outcomes 
in ​​X​1​​​ and ​​X​0​​​ in deviations with respect to the 
units’ pre-intervention means is equivalent 
to a proposal in Doudchenko and Imbens 
(2016), who measure outcomes in levels but 
allow for a constant shift in the synthetic 
control fit, ​​X​1​​ − α ​I​k×1​​ − ​X​0​​ W​ (with ​t​ th row  
equal to ​​Y​1t​​ − α − ​w​2​​ ​Y​2t​​ − ⋯ − ​w​J+1​​ ​Y​J+1t​​​), 
where ​​I​k×1​​​ is a vector of ones of the same 
dimension as ​​X​1​​​. As explained in Doudchenko 
and Imbens (2016), allowing for a constant 
shift between ​​X​1​​​ and ​​X​0​​ W​ makes little 
sense in more general settings, when multi-
ple covariates of different scales, instead of 
pre-intervention outcomes only, are included 
in ​​X​1​​​ and ​​X​0​​​. Notice, however, that measuring 
outcomes in deviations with respect to their 
pre-intervention means instead of allowing 
for a constant shift between ​​X​1​​​ and ​​X​0​​ , W​ 
may still be useful to account for differences 
in the level of the outcomes across units, 
even if ​​X​1​​​ and ​​X​0​​​ include other predictors  
aside from pre-intervention outcomes.

Transformations of the outcome variable 
like those in the previous paragraph may be 
useful in some cases because, as evidenced in 
the vast difference-in-differences literature, 
there are instances when a comparison 
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group can reproduce the changes in the out-
come variable for the unit of interest even 
if the level of the outcome variable cannot 
be reproduced. In other cases, however, 
credible counterfactuals require reproduc-
ing not only the trend of the outcome vari-
able for the treated but also the level. For 
example, some formulations of the conver-
gence hypothesis in economic growth imply 
that countries with different levels of per 
capita GDP will tend to experience differ-
ent growth rates on average, in the absence 
of an intervention. Similarly, nonlinearities 
in labor earnings profiles over the life cycle 
imply that differences in the age distribution 
across populations will typically result in dif-
ferences in the growth of labor earnings.17 
More generally, there may not exist a com-
bination of untreated units that provide a 
credible approximation to the treated units, 
and the conventional synthetic control esti-
mator should not be used in that case. 

It should also be noted that differencing 
the dependent variable may result in a sub-
stantial increase in the part of the variance 
of the outcome that is attributable to noise, 
potentially inducing an increase in bias. As 
an example, consider the linear factor model 
in equation (10). Differencing equation (10) 
we obtain

​Δ​Y​ jt​ N​ = Δ​δ​t​​ + Δ​θ​t​​ ​Z​j​​ + Δ​λ​t​​ ​μ​j​​ + Δ​ε​jt​​,​

where ​Δ​Y​ jt​ N​ = ​Y​ jt​ N​ − ​Y​ jt−1​ N  ​​ with analogous 
expressions for ​Δ​δ​t​​​, ​Δ​θ​t​​​, ​Δ​λ​t​​​, and ​Δ​ε​jt​​​. Notice 
first that the differenced equation retains the 
linear factor structure. Notice also that dif-
ferencing the outcome may help control the 
bias when the vectors of common factors ​​θ​t​​​ 

17 Notice that for nonlinearities in the process that gen-
erates ​​Y​ it​ N​​ may require that, for each unit ​j​ contributing to 
the synthetic control, ​​X​j​​​ is reasonably close to ​​X​1​​​. Section 8 
describes a synthetic control estimator with weights that 
penalize ​∥​X​1​​ − ​X​j​​∥​.

and ​​λ​t​​​, or at least some of their components, 
vary little in time. In that case, the magni-
tudes of ​Δ​θ​t​​​ and ​Δ​λ​t​​​ may be small even 
if the magnitudes of ​​θ​t​​​ and ​​λ​t​​​ are large. 
This is the usual rationale for working with 
differenced outcomes and the basis for 
difference-in-differences estimators. There 
may be opposing forces at play, however. 
Suppose, in particular, that the idiosyncratic 
shocks, ​​ε​jt​​​, are independent or roughly inde-
pendent in time. Then, the variance of ​Δ ​ε​jt​​​ 
is larger than the variance of ​​ε​jt​​​. Now, follow-
ing the characterization of the bias in subsec-
tion 3.3, a larger residual variance may result 
in a higher risk of over-fitting and an increase 
in the bias of the synthetic control estimator.

Time Horizon. The effect of some inter-
ventions may take time to emerge or to be 
of sufficient magnitude to be quantitatively 
detected in the data. An obvious but unsat-
isfying approach to this problem is to wait 
until the effects of the intervention run their 
course. A more proactive approach is to use 
surrogate outcomes or leading indicators of 
the outcome variable of interest.

6.  Data Requirements

This section discusses data requirements 
for credible applications of synthetic controls. 
Like many of the contextual requirements in 
the previous section, the data requirements 
discussed here apply not only to synthetic 
control estimation but, more generally, to 
comparative case study methods.

Aggregate Data on Predictors and 
Outcomes. From the previous discussion, it 
can be seen that the synthetic control method 
requires the availability of data on outcomes 
and predictors of the outcome for the unit 
or units exposed to the intervention of inter-
est and a set of comparison units. Predictors 
and outcomes are often series reported by 
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government agencies, multilateral organi-
zations, and private entities. Examples of 
these types of outcomes are state-level crime 
rates in the United States (Donohue, Aneja, 
and Weber 2019), country-level per capita 
GDP (Abadie, Diamond, and Hainmueller 
2015), and state-level cigarette consump-
tion statistics in the United States (Abadie, 
Diamond, and Hainmueller 2010), which are 
routinely reported in publications produced 
or commissioned by the Federal Bureau of 
Investigation, the World Bank, and tobacco 
industry groups, respectively. Sometimes, 
when aggregate data do not exist, aggregates 
of micro-data are employed in comparative 
case studies. For example, in his study of the 
labor market effects of the Mariel Boatlift in 
Miami, Card (1990) uses micro-data from 
the Current Population Survey (CPS) to 
estimate aggregate values for wage rates and 
unemployment for workers in Miami and 
a set of four comparison cities before and 
after the Mariel Boatlift. Similarly, Bohn, 
Lofstrom, and Raphael (2014) use data from 
the CPS to estimate the fraction of the pop-
ulation composed of Hispanic noncitizens by 
state in the United States.

Sufficient Pre-intervention Information. 
The credibility of a synthetic control 
estimator depends in great part on its ability 
to steadily track the trajectory of the out-
come variable for the affected unit before 
the intervention. As discussed in subsec-
tion 3.3, Abadie, Diamond, and Hainmueller 
(2010) show that if the data-generating pro-
cess follows a linear factor model, then the 
bias of the synthetic control estimator is 
bounded by a function that is inversely pro-
portional to the number of pre-intervention 
periods (provided that the synthetic control 
closely tracks the trajectory of the outcome 
variable for the affected unit during the 
pre-intervention periods). Therefore, when 
designing a synthetic control study, it is of 
crucial importance to collect information on 

the affected unit and the donor pool for a 
large pre-intervention window.

A caveat to the preference for a large 
number of pre-intervention periods is 
given by the possibility of structural breaks. 
Consider the linear factor model of equa-
tion (10). In this model, structural stability 
is represented by the restriction of con-
stant factor loadings. Even if the model is 
a good representation of the distribution 
of the data at a relatively short time scale, 
its accuracy may suffer once we allow the 
number of periods to be large enough. 
Choosing ​​v​1​​, … , ​v​k​​​ to up-weight the most 
recent measures (relative to the prediction 
window) included in ​​X​1​​​ and ​​X​0​​​ helps allevi-
ate structural instability concerns.

With a small number of pre-intervention 
periods, close or even perfect fit of the pre-
dictor values for the treated unit may be spu-
riously attained, in which case the resulting 
synthetic control may fail to reproduce the 
trajectory of the outcome for the treated 
unit in the absence of the intervention. The 
severity of this problem can be diminished if 
powerful predictors of post-intervention val-
ues of ​​Y​ jt​ N​​, aside from pre-intervention values 
of the outcome, are included in ​​X​j​​​, reducing 
the residual variance and, as a result, the risk 
of over-fitting.

Sufficient Post-intervention Information. 
This data requirement derives partly from 
the Time Horizon contextual requirement in 
section 5. The evaluation data must include 
outcome measures that are possibly affected 
by the intervention and are relevant for the 
policy decision or scientific inquiry that is 
the object of the study. This may be prob-
lematic if the effect of an intervention is 
expected to arise gradually over time and if 
no forward-looking measures of the outcome 
are available. Conversely, in some practical 
instances, the effect of an intervention may 
dissipate rapidly after showing substan-
tial effectiveness for a few initial periods. 
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Extensive post-intervention information 
allows a more complete picture of the effects 
of the intervention, in time and across the 
various outcomes of interest.

7.  Robustness and Diagnostic Checks

The credibility of a synthetic control 
estimator depends on its ability to repro-
duce outcomes for the treated unit in the 
absence of the intervention. This section 
presents diagnostic checks that can be used 
to evaluate the credibility of synthetic con-
trol counterfactuals in actual applications, 
as well as robustness exercises to assess 
sensitivity of results to changes in the design 
of the study.

Backdating. The possibility of backdating 
was discussed in section 5 as a way to address 
anticipation effects on the outcome variable 

before an intervention occurs. In the absence 
of anticipation effects, the same idea can be 
applied to assess the credibility of a synthetic 
control in concrete empirical applications. 
Figure 3 shows the result of estimating the 
effect of the 1990 German reunification with 
the intervention backdated to 1980. Two 
important features of the results are as fol-
lows. First, as one would hope, the synthetic 
control estimator closely tracks per capita 
GDP for West Germany in the 1981–90 
period, before the start of the actual inter-
vention. This is the“in-time placebo test” in 
Abadie, Diamond, and Hainmueller (2015) 
and similar to the “preprogram test” in 
Heckman and Hotz (1989). The absence of 
estimated effects prior to the intervention 
provides credibility of the synthetic con-
trol estimator, as it demonstrates that the 
synthetic control is able to reproduce the 
trajectory of the outcome variable for the 
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treated unit before the intervention occurs. 
Second, a gap between per capita GDP for 
West Germany and its synthetic control 
counterpart appears around the time of the 
German reunification, as in figure 1, panel 
B. This is the case even when the interven-
tion is ten-year backdated in the data and 
the procedure uses no information on the 
timing of the actual intervention. The shape 
and direction of the gap in figure 3 is sim-
ilar to that of figure 1, panel B, albeit of a 
somewhat smaller magnitude. The fact that 
the estimated effect of the German reuni-
fication appears shortly after 1990 even 
when the intervention is artificially ten-year 
backdated in the data provides credibility to 
the synthetic control estimator of the 1990 
German reunification.

Robustness Tests. Regardless of the esti-
mation method employed in the analysis, 
the main conclusions of an empirical study 
should display some level of robustness with 
respect to changes in the study design. In the 
context of synthetic controls, two important 
ways the design of a study may influence 
results are (i) the choice of units in the donor 
pool, and (ii) the choice of predictors of the 
outcome variable. The first choice corre-
sponds to the columns in ​​X​0​​​, and the second 
one corresponds to the rows in ​​[​X​1​​  :  ​X​0​​]​​.

As a example of a robustness test, fig-
ure 4 reports the results of a leave-one-out 
re-analysis of the German reunification 
data in Abadie, Diamond, and Hainmueller 
(2015), taking from the sample one-at-a-time 
each of the countries that contribute to the 
synthetic control in table 2. All leave-one-out 
estimates closely track the per capita GDP 
series for West Germany before 1990. The 
resulting estimates for the years after the 
reunification are all negative and centered 
around the result produced using the entire 
donor pool. The main conclusion of a neg-
ative estimate of the German reunification 
on per capita GDP is robust to the exclusion 

of any particular country. In other exam-
ples, however, results may not be as robust 
as those in figure 4, and the scientific sig-
nificance of the estimates should be evalu-
ated with that information in mind. If the 
exclusion of a unit from the donor pool has 
a large effect on results without a discernible 
change in pre-intervention fit, this may war-
rant investigating if the change in the magni-
tude of the estimate is caused by the effects 
of other interventions or by particularly large 
idiosyncratic shocks on the outcome of the 
excluded untreated unit.

8.  Extensions and Related Methods

As the literature on synthetic control 
methods and related methods has greatly 
expanded in recent years, it has become 
increasingly difficult for researchers inter-
ested in applying these methods to figure out 
what is available where. In this section, I pro-
vide a brief guide to the recent contributions 
in the area. This represents only an incom-
plete snapshot of a literature that is rapidly 
evolving.

Multiple Treated Units. Several recent 
articles consider estimation and inference 
with synthetic controls for the case where 
there are multiple treated units. Notice 
that the presence of multiple treated units 
does not give rise to additional conceptual 
challenges for the estimation of synthetic 
controls. Treatment effects can be estimated 
for each treated unit separately and aggre-
gated in a second step if desired. However, 
the presence of multiple treated units cre-
ates some practical problems for estimation, 
as well as new challenges and opportunities 
for inference.

A potential complication with synthetic 
control estimation is that the minimizer 
of equation (7) subject to the weight con-
straints may not be unique, especially if the 
values of the predictors for a treated unit fall 
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inside the convex hull of the values of the 
predictors for the donor pool. Suppose, for 
now, that only the first unit is treated. If ​​X​1​​​ 
belongs to the convex hull of the columns 
of ​​X​0​​​, this implies that we can find ​​W​​ ⁎​​ such 
that ​​X​1​​ = ​X​0​​ ​W​​ ⁎​​. Moreover, the number of 
minimizers to equation (7) may be (and will 
typically be) infinite.18 That is, there may exist 
an infinite number of solutions to the prob-
lem of minimizing of equation (7), subject to 
the weight constraints, that perfectly repro-
duce ​​X​1​​​. An algorithm minimizing equation 
(7) subject to the weight constrains may 
select a solution, ​​W​​ ⁎​​, with positive entries for 
units that are far away from the treated unit 

18 If ​​W​ 1​ ⁎​​ and ​​W​ 2​ ⁎​​ are both minimizers of equa-
tion (7) subject to the weight constraints, then so is 
​a ​W​ 1​ ⁎​ + ​(1 − a)​ ​W​ 2​ ⁎​​, for ​a ∈ ​(0, 1)​​. This implies that the 
number of solutions to the minimization equation (7) given 
the weight constraints can only be one or infinity.

in the space of the predictors, even when an 
alternative solution exists based only on units 
with predictor values similar to ​​X​1​​​. This may, 
in turn, lead to large interpolation biases that 
remain unchecked under the illusion of per-
fect fit, ​​X​1​​ = ​X​0​​ ​W​​ ⁎​​.19

Even in moderate dimensions, ​k​, the curse 
of dimensionality works to keep treated 
observations outside of the convex hull of 
the units in the donor pool. Therefore, in 
settings with one treated unit, multiplicity of 
solutions is rarely an issue, and if it arises it 
can often be easily addressed by restricting 
the donor pool to units with predictor val-
ues most similar to the values of the predic-
tor for the unit exposed to the treatment. 

19 Notice, however, that perfect fit, ​​X​1​​ = ​X​0​​ ​W​​ ⁎​​, 
where ​​W​​ ⁎​​ minimizes equation (7) subject to the weight 
constraints, is indicative of the possibility of infinite 
solutions.
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However, in settings with many treated and 
untreated units, multiplicity of solutions and 
how to choose among them become import-
ant issues for estimation. Moreover, large 
interpolation biases may also arise in settings 
where the predictor values for treated units 
fall outside the convex hull of the predictor 
values for the units in the donor pool, espe-
cially when the units contributing to synthetic 
controls are far away from the treated units 
in the space of predictors. That is, there may 
be cases such that ​​X​1​​ ≈ ​X​0​​​W​​ ⁎​​ but where ​​X​j​​​ 
greatly differs from ​​X​1​​​, for some unit ​j​ con-
tributing to the synthetic control.

To address these challenges, Abadie 
and L’Hour (2019) propose a synthetic 
control estimator that incorporates a pen-
alty for pairwise matching discrepancies 
between the treated units and each of the 
units that contribute to their synthetic 
controls. Consider a setting with ​I​ treated 
units and ​J​ untreated units. We will index 
observations so that the treated units come 
first. That is, units ​j = 1, … , I​ are treated 
and units ​j = I + 1, … , I + J​ are untreated, 
with ​I + J​ units in total. As in previous sec-
tions, ​​X​j​​​ is the vector of predictor values 
for unit ​j​, and ​​X​0​​​ is the matrix of the pre-
dictor values for the units in the donor pool. 
For ​λ > 0​, the estimator in Abadie and 
L’Hour (2019) minimizes

(13) ​​ ∥​X​i​​ − ​X​0​​W∥​​ 2​ + λ​ ∑ 
j=I+1

​ 
I+J

  ​​​w​i​​ ​∥​X​i​​ − ​X​j​​∥​​ 2​​

with respect to ​W = ​​(​w​I+1​​, … , ​w​I+J​​)​ ′ ​​, for 
each treated unit, ​i = 1, … , I​, subject to the 
constraints that the weights ​​w​I+1​​, … , ​w​I+J​​​ 
are nonnegative and sum to one.20 The first 
term in equation (13) is the aggregate dis-
crepancy between the predictor values for 
treated unit ​i​ and its synthetic control. The 
second term in equation (13) penalizes 

20 Although this is not reflected in the notation in equa-
tion (13), ​λ​ may depend on ​i​.

pairwise matching discrepancies between 
the predictor values for unit ​i​ and each of 
the units that contribute to its synthetic con-
trol, weighted by the magnitudes of their 
contributions. The penalty term is added 
to equation (13) with the aim of reducing 
interpolation biases. As ​λ → ∞​, the penal-
ized estimator converges to one-to-one 
matching. As ​λ → 0​, the estimator uses an 
aggregate of pairwise matching discrepan-
cies weighted by ​W​ to select among all syn-
thetic controls that attain the minimal value 
for ​∥​X​i​​ − ​X​0​​ W∥​. Values of ​λ​ between zero 
and infinity trade off aggregate fit of the syn-
thetic control and pairwise fit of each of the 
units that contribute to it.

Abadie and L’Hour (2019) show that 
if ​λ > 0​, then the minimizer of equation (13) 
is unique and sparse (provided that the col-
umns of ​​X​0​​​ are in general quadratic position, 
see Abadie and L’Hour 2019 for details). 
They also provide cross-validation tech-
niques to select ​λ​.

Let ​​W​ i​ ⁎​ = ​​(​w​ iI+1​ ⁎ ​ , … , ​w​ iI+J​ ⁎ ​ )​ ′ ​​ be the solu-
tion to the minimization problem in equa-
tion (13). Then, the estimated treatment 
effect for ​i = 1, … , I​ and ​t = ​T​0​​ + 1, … , T​ is 
as in (8),

(14)	​​​ τ ˆ ​​it​​ = ​Y​it​​ − ​  ∑ 
j=I+1

​ 
I+J

  ​​ ​w​ ij​ ⁎ ​ ​Y​jt​​,​

with average treatment effect given by

	​​​ τ ˆ ​​t​​ = ​ 1 _ 
I
 ​ ​ ∑ 
i=1

​ 
I

 ​​ ​​ τ ˆ ​​it​​.​

In many instances, especially where the 
sample units are aggregates like regions 
or countries, a weighted average (e.g., 
population-weighted, or GDP-weighted) 
treatment effect may be most relevant.

Dube and Zipperer (2015) and Abadie and 
L’Hour (2019) propose extensions of the per-
mutation methods in Abadie, Diamond, and 
Hainmueller (2010) to the case with multiple 
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treated units. They employ rank-based sta-
tistics on the permutation distribution of 
treatment effects, where the identity of the 
treated units is permuted at random in the 
data. In particular, Abadie and L’Hour (2019) 
propose the following simple generalization 
of the permutation test in Abadie, Diamond, 
and Hainmueller (2010). They consider a 
setting with ​I​ treated units and ​J​ untreated 
units. In each permutation ​b = 1, … , B​, the 
identities of the ​I​ treated units are reas-
signed in the data among the ​I + J​ units in 
the sample, and statistics ​​r​b,1​​, … , ​r​b,I​​​ are 
calculated for the units coded as treated in 
the permutation. These statistics could be 
(bias-corrected) synthetic control estimates 
of treatment effects, or rescaled versions that 
take into account the pre-intervention fit as in 
equation (12), or their absolute values, pos-
itive parts, or negative parts, depending on 
the context. Notice that when ​I​ is small rela-
tive to ​I + J​, it may be possible to consider all 
possible treatment reassignments, in which 
case ​B​ is equal to ​​(I + J)​​-choose-​I​. If consid-
ering all possible treatment reassignments is 
computationally expensive, inference can be 
based on ​B​ random draws from all subsets 
of ​I​ units in the sample. Let ​​r​0,1​​, … , ​r​0,I​​​ be 
the same statistics calculated for the actual 
treated units. Then, ​B​ permutation repe-
titions, in addition to the original sample 
values for treatment, produce ​I × ​(B + 1)​​ 
statistics, ​​r​0,1​​, … , ​r​0,I​​, … , ​r​B,1​​, … , ​r​B,I​​​. Now, 
for each ​b = 0, … , B​, one can calculate ​​t​b​​​ 
equal to the sum of the ranks of ​​r​b,1​​, … , ​r​b,I​​​ 
within ​​r​0,1​​, … , ​r​0,I​​, … , ​r​B,1​​, … , ​r​B,I​​​. The per-
mutation inference in Abadie and L’Hour 
(2019) is based on the “extremeness” of 
the statistic ​​t​0​​​ within the permutation dis-
tribution ​​t​0​​, ​t​1​​, … , ​t​B​​​. Notice that, for ​I = 1​ 
this mode of inference amounts to the per-
mutation test in Abadie, Diamond, and 
Hainmueller (2010).

Hainmueller (2012) and Robbins,  Saunders, 
and Kilmer (2017) consider also settings with 
multiple treated units. Instead of producing 

a separate synthetic control for each treated 
unit, they calculate a single synthetic control 
to match aggregate values of the predictors 
between the treated and nontreated samples. 
As in the usual synthetic control estimator, the 
weights in Hainmueller (2012) and Robbins, 
Saunders, and Kilmer (2017) are nonnegative 
and sum to a predetermined constant (typi-
cally equal to one, or to the number of treated 
units, depending on the scaling of the vari-
ables in the data set). These estimators require 
that there is at least a convex combination of 
units in the donor pool that exactly matches 
a prespecified set of moments of the predic-
tors for the treated units. Among the sets of 
weights that perfectly reproduce the moments 
for the treated sample, Hainmueller (2012) 
and Robbins, Saunders, and Kilmer (2017) 
choose the one that minimizes a measure of 
discrepancy with respect to constant weights.

Bias Correction. Another practical com-
plication in settings with many treated units 
is that, even with a moderate ​k​, the predictor 
values for some of the treated units may not 
be closely reproduced by a synthetic control, 
or may be closely reproduced only by com-
binations of units with large pairwise match-
ing discrepancies in predictor values with 
respect to the treated unit. At the same time, 
including those ill-fitted units in the calcula-
tion of the aggregate effect may be important 
for the desired interpretation of the estimate 
(e.g., as an estimate of the average effect of 
the treatment on the treated). In that case, 
one could be concerned about the potential 
biases produced by matching discrepancies 
between the values of the predictors for 
the treated units and those for the respec-
tive synthetic controls.21 Bias corrections 

21 Related to this problem, Ferman and Pinto (2019) 
and Botosaru and Ferman (2019) study the properties of 
synthetic control estimators for cases where the value of 
the predictors for a treated unit cannot be closely matched 
by a synthetic control.
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play also an important role in reducing reg-
ularization biases in inferential methods for 
regression-based variants of synthetic con-
trols (see, e.g., Arkhangelsky et  al. 2019, 
Chernozhukov, Wüthrich, and Zhu 2019b). 

Abadie and L’Hour (2019) and 
Ben-Michael et  al. (2020) propose 
modifications of the synthetic control esti-
mator along the lines of the bias-correction 
techniques of Rubin (1973), Quade (1982), 
and Abadie and Imbens (2011). They use 
regression adjustments to attenuate the bias 
of synthetic control estimators in settings 
where the synthetic control counterfactual is 
constructed using untreated units with values 
of the predictors that do not closely repro-
duce the predictor values for the treated 
unit or units. For ​t = ​T​0​​ + 1, … , T​, let ​​​μ ˆ ​​0t​​​ be 
a sample regression function (parametric or 
nonparametric) estimated by regressing the 
untreated outcomes, ​​Y​I+1,t​​, … , ​Y​I+J,t​​​, on the 
values of the predictors for the untreated 
units, ​​X​I+1​​, … , ​X​I+J​​​. The bias-corrected syn-
thetic control estimator for unit ​i​ is

(15)​ ​​​​ τ ˆ ​​it​​  = ​ (​Y​it​​ − ​  ∑ 
j=I+1

​ 
I+J

  ​​ ​w​ ij​ ⁎ ​ ​Y​jt​​)​ 

	 − ​  ∑ 
j=I+1

​ 
I+J

  ​​ ​w​ ij​ ⁎ ​​(​​μ ˆ ​​0t​​​(​X​i​​)​ − ​​μ ˆ ​​0t​​​(​X​j​​)​)​.​

The first term on the right-hand side of (15) 
is the synthetic control estimator in (14). The 
second term uses a regression adjustment to 
correct for discrepancies between the pre-
dictor values for the treated unit and the 
predictor values for the units that contribute 
to the synthetic control. Alternatively, the 
estimator in (15) can be expressed as

(16) ​​​ τ ˆ ​​it​​  = ​ (​Y​it​​ − ​​μ ˆ ​​0t​​​(​X​i​​)​)​ 

	 − ​  ∑ 
j=I+1

​ 
I+J

  ​​​w​ ij​ ⁎ ​​(​Y​jt​​ − ​​μ ˆ ​​0t​​​(​X​j​​)​)​.​

Equation (16) provides an interpretation of 
the bias-corrected synthetic control estima-
tor as a synthetic control estimator applied 
to regression residuals. The bias correction 
in equation (16) is related to the proposal in 
Doudchenko and Imbens (2016) to residual-
ize the outcomes with respect to covariates 
before calculating synthetic controls.

A different avenue to evaluate the bias 
of synthetic control estimators, which was 
discussed in section 7, is given by the avail-
ability of pre-intervention periods, when 
the effect of the treatment is not yet real-
ized. In the absence of anticipation effects, 
estimates of treatment effects before the 
intervention are reflective of estimation 
biases. If biases are stable in time, esti-
mates of those biases could be used to 
correct synthetic control estimates. Bias 
adjustments of this type, which are closely 
related to difference-in-differences meth-
ods, are proposed in Arkhangelsky et  al. 
(2019) and Chernozhukov, Wüthrich, and  
Zhu (2019b).

Regression-Based Methods and Extra-
polation. Several articles have contributed 
regression-based estimators for synthetic 
controls. These procedures allow extrapola-
tion by considering synthetic controls that 
are not convex combinations of the units in 
the donor pool. Doudchenko and Imbens 
(2016) consider an estimator that fits all 
pretreatment outcomes for the treated, with 
weights that may be negative and may not 
sum to one, and allow for a constant shift in 
the level of the synthetic control estimator. 
They propose to use an elastic net—that is, a 
combination of lasso (​​L​1​​​) and ridge (​​L​2​​​) pen-
alties—to regularize the weights. The coun-
terfactual estimates for ​t = ​T​0​​ + 1, … , T​ in 
Doudchenko and Imbens (2016) are

(17)	​​​ Y ˆ ​​ 1t​ N​ = ​α ˆ ​ + ​ ∑ 
j=2

​ 
J+1

​​ ​​w ˆ ​​j​​ ​Y​jt​​,​
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where ​​α ˆ ​, ​​w ˆ ​​2​​, … , ​​w ˆ ​​J+1​​​ minimize

(18) ​​  ∑ 
t=1

​ 
​T​0​​

 ​​​​(​Y​1t​​ − α − ​ ∑ 
j=2

​ 
J+1

​​​w​j​​ ​Y​jt​​)​​​ 

2

​ 

+ ​λ​1​​​(​ 1 − ​λ​2​​ _ 
2
 ​ ​  ∑ 

j=2
​ 

J+1

​​​w​ j​ 2​ + ​λ​2​​ ​ ∑ 
j=2

​ 
J+1

​​ |​w​j​​|)​,​

with respect to (​α, ​w​2​​, … , ​w​J+1​​) ∈ ​ℝ​​ J+1​​, 
where ​​λ​1​​ ≥ 0​ and ​0 ≤ ​λ​2​​ ≤ 1​ are regulariza-
tion parameters selected by cross-validation. 
To incorporate additional predictors in 
their estimation procedure, Doudchenko 
and Imbens (2016) propose to use least 
squares in a first step to residualize the out-
comes ​​Y​jt​​​ for ​j = 1, … , J + 1​ in equation 
(18) with respect to any other covariates. 
Chernozhukov, Wüthrich, and Zhu (2019a) 
consider different penalty terms, includ-
ing lasso regularization (i.e., ​​λ​2​​ = 1​), in the 
context of an inferential procedure for syn-
thetic controls. Regression estimators of 
this type are also related to the panel data 
approach to the program evaluation esti-
mator in Hsiao, Ching, and Wan (2012), 
where ​​λ​1​​ = 0​ and the parameters in equa-
tion (17) are estimated by unpenalized least 
squares. Li (2019) considers the same esti-
mator as in Hsiao, Ching, and Wan (2012), 
but regularizes the weights ​​​w ˆ ​​2​​, … , ​​w ˆ ​​J+1​​​ to be 
nonnegative.

Arkhangelsky et  al. (2019) introduce a 
synthetic control estimator that weights 
not only the units in the control group, but 
also the pre-intervention time periods, to 
approximate the counterfactual of inter-
est. The time weights in Arkhangelsky et al. 
(2019) play a similar role as the predictor 
weights, ​​v​1​​, … , ​v​k​​​, of subsection 3.2. They 
reflect the importance of each of the individ-
ual predictors, which in the leading version 
of the estimator of Arkhangelsky et al. (2019) 
are past outcome values.

Matrix Completion/Estimation Methods. 
Amjad, Shah, and Shen (2018); Amjad et 
al. (2019); and Athey et  al. (2020) propose 
related methods that use tools from the 
matrix completion/matrix estimation liter-
ature. Suppose, as before, that unit ​j = 1​ is 
the treated unit, and units ​j = 2, … , J + 1​ 
are not treated. Amjad, Shah, and 
Shen (2018) posit a nonlinear factor- 
structure model for the untreated, 
​​Y​ jt​ N​ = f​(​μ​j​​, ​λ​t​​)​ + ​ε​jt​​​, with ​j = 2, … , J + 1​ 
and ​t = 1, … , T​, where ​​ε​jt​​​ is random noise. 
Their framework allows for the pres-
ence of missing values in the matrix ​​{​Y​ jt​ N​}​​, 
with ​j = 1, … , J + 1​, and ​t = 1, … , T​. Using 
matrix estimation methods, in particular 
singular value thresholding (see Chatterjee 
2015), Amjad, Shah, and Shen (2018) esti-
mate a low-rank approximation, ​​{​​M ˆ ​​jt​​}​​, to the 
matrix ​​{​M​jt​​}​ = ​{f​(​μ​j​​, ​λ​t​​)​}​​. The objects ​​​M ˆ ​​jt​​​ 
are used to de-noise the outcomes ​​Y​ jt​ N​​ and 
to impute missing values, if any. Then, syn-
thetic controls are obtained as linear com-
binations of ​​​M ˆ ​​jt​​​, with coefficients estimated 
by ridge regression of ​​Y​1t​​​ on ​​​M ˆ ​​2t​​, … ​​M ˆ ​​J+1t​​​ in 
the pre-intervention periods. The estimator 
in Amjad, Shah, and Shen (2018) does not 
incorporate covariates, using data on out-
comes, ​​Y​jt​​​, only. Amjad et al. (2019) modify the 
estimator in Amjad, Shah, and Shen (2018) to 
incorporate additional variables aside from 
the outcome of interest, under the assump-
tion that all variables depend on common 
latent factors. Athey et  al. (2020) postulate 
the model ​​Y​ jt​ N​ = ​M​jt​​ + ​ε​jt​​​, for ​j = 1, … , J + 1​ 
and ​t = 1, … , T​, where ​​ε​jt​​​ is again random 
noise. In their framework, missing entries 
in the matrix ​​{​Y​ jt​ N​}​​, with ​j = 1, … , J + 1​ 
and ​t = 1, … , T​, arise naturally for the treated 
observation (or treated observations, if mul-
tiple units are treated) in the posttreatment 
periods. Athey et  al. (2020) assume that 
the matrix ​​{​M​jt​​}​​, with ​j = 1, … , J + 1​ 
and ​t = 1, … , T​, is low-rank, which allows 
them to obtain an estimate, ​​{​​M ˆ ​​jt​​}​​, via matrix 
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completion techniques. The estimated coun-
terfactual outcomes without the treatment 
for the treated are the values of ​​​M ˆ ​​jt​​​ such 
that ​​Y​ jt​ N​​ is missing. Extensions allow for mod-
els with covariates and the inclusion of time 
fixed effects and unit fixed effects (separate 
from the low-rank matrix, ​​M​jt​​​).

Inference. Several studies have proposed 
inferential tools for synthetic controls as alter-
natives to the permutation test in subsection 
3.5. Firpo and Possebom (2018) propose sev-
eral generalizations of the permutation test 
in subsection 3.5 and contribute confidence 
sets based on inverting the results of these 
tests. In a repeated sampling framework for 
stationary data and large ​​T​0​​​, Hahn and Shi 
(2017) propose to apply the end-of-sample 
instability test of Andrews (2003) to obtain 
an inferential procedure for synthetic con-
trol estimators. In the context of synthetic 
control estimators, the end-of-sample insta-
bility test of Andrews (2003) is related to the 
backdating ideas of section 7. It compares 
the values of treatment effects computed 
for the ​T − ​T​0​​​ post-intervention periods to 
the distribution of the of same values com-
puted for every subset of ​T − ​T​0​​​ consecu-
tive pre-intervention periods. Related also 
to Andrews’s end-of-sample instability test, 
Chernozhukov, Wüthrich, and Zhu (2019a) 
devise a sampling-based inferential proce-
dure for synthetic controls and related meth-
ods that employs permutations of regression 
residuals in the time dimension. In particular, 
Chernozhukov, Wüthrich, and Zhu (2019a) 
assume ​​Y​ 1t​ N ​ = ​P​ t​ N​ + ​u​t​​​, where ​​u​1​​, … , ​u​T​​​ are 
stationary and weakly dependent with mean 
zero. Let ​​τ​​T​0​​+1​​, … , ​τ​T​​​ be the effects of 
the treatment on the treated unit (unit 
one) at times ​t = ​T​0​​ + 1, … , T​.22 The 

22 To be consistent with the notation for ​​P​ t​ N​​ and ​​u​t​​​ and 
because only unit one is treated, here I drop the subscript 
indicating that identity of the treated unit from the nota-
tion for treatment effect.

potential outcome under the intervention 
is ​​Y​ 1t​ I ​ = ​P​ t​ N​ + ​τ​t​​ + ​u​t​​​ for ​t > ​T​0​​​. To simplify 
the exposition, assume that ​​u​1​​, … , ​u​T​​​ are 
i.i.d. Then, the distribution of a function, 
​S​(​u​​T​0​​+1​​, … , ​u​T​​)​​, of the post-intervention val-
ues of ​​u​t​​​ should be the same as the distribution 
of ​S​(​u​π​(​T​0​​+1)​​​, … , ​u​π​(T)​​​)​​, where ​π​(1)​, … , π​(T)​​ 
is a random permutation of ​1, … , T​. Suppose 
for now that ​​P​ t​ N​​ is known. Then, under a null 
hypothesis, ​​τ​​T​0​​+1​​ = ​a​​T​0​​+1​​, …, ​τ​T​​ = ​a​T​​​, we can 
compute ​​u​t​​ = ​Y​1t​​ − ​P​ t​ N​ − ​a​t​​​, where ​​a​t​​ = 0​ 
for ​1 ≤ t ≤ ​T​0​​​. As a result, we can test the 
null hypothesis by comparing the value  
of ​S​(​u​​T​0​​+1​​, … , ​u​T​​)​​ to its permutation 
distribution, that is, the distribution 
of ​S​(​u​π​(​T​0​​+1)​​​, … , ​u​π​(T)​​​)​​, which can be directly 
computed in the data. A feasible implemen-
tation of the test requires estimation of the 
residuals, ​​u​1​​, … , ​u​T​​​. In the context of the 
synthetic control method, Chernozhukov, 
Wüthrich, and Zhu (2019a) adopt the 
model ​​P​ t​ N​ = ​∑ j=2​ 

J+1 ​​​w​j​​​Y​jt​​​ with nonnegative 
weights that sum to one, and ​E​[​u​t​​ ​Y​jt​​]​ = 0​ 
for ​j = 2, … , J + 1​, and implement their 
test on constrained least squares residu-
als, ​​​u ˆ ​​1​​, … , ​​u ˆ ​​T​​​. The proposal in Chernozhukov, 
Wüthrich, and Zhu (2019a) differs from 
other synthetic control procedures in two 
important respects. First, while much of the 
literature on synthetic controls has adopted 
the linear factor model of subsection 3.3 
as a working model to understand the 
properties of synthetic control estimators, 
Chernozhukov, Wüthrich, and Zhu (2019a) 
adopt instead the restriction ​E​[​u​t​​ ​Y​jt​​]​ = 0​ 
for ​j = 2, … , J + 1​ to estimate ​​P​ t​ N​​.23 They 

23 To understand the differences between these two 
frameworks, notice that when the data are generated 
by the linear factor model of subsection 3.3, and there 
is an unbiased synthetic control—that is, a synthetic 
control with weights, ​​w​2​​, … , ​w​J+1​​​ that exactly repro-
duces ​​Z​1​​​ and ​​μ​1​​​—then, the restriction ​E​[​u​t​​ ​Y​jt​​]​ = 0​ for ​
j = 2, … , J + 1​ and ​​u​t​​ = ​Y​ 1t​ N ​ − ​∑ j=2​ 

J+1 ​​​w​j​​ ​Y​jt​​​ does not hold in 
general (see Ferman and Pinto 2019). One exception is 
given by the results in Ferman (2019), which imply that ​
E​[​u​t​​ ​Y​jt​​]​ = 0​ for ​j = 2, … , J + 1​ will approximately hold as ​
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show, however, that regardless of the valid-
ity of the model, their testing procedure 
remains valid as long as the estimated 
residuals, ​​​u ˆ ​​1​​, … , ​​u ˆ ​​T​​​ are exchangeable under 
the null hypothesis. Second, in contrast 
to other synthetic control procedures that 
compute the weights ​​w​2​​, … , ​w​J+1​​​ using 
pre-intervention data only, in the inferential 
procedure of Chernozhukov, Wüthrich, and 
Zhu (2019a) the synthetic control weights 
are estimated under the null hypothe-
sis, ​​τ​​T​0​​+1​​ = ​a​​T​0​​+1​​, …, ​τ​T​​ = ​a​T​​​, using data 
on ​​Y​ it​ N​ = ​Y​it​​ − ​a​t​​​ for all periods, including 
the periods after the intervention. For a sim-
ilar set of models, Chernozhukov, Wüthrich, 
and Zhu (2019b) propose bias-corrected 
synthetic control estimation and confi-
dence intervals for the mean value of the 
treatment effect over the post-intervention 
period, ​​(​τ​​T​0​​+1​​ + ⋯ + ​τ​T​​)​ / ​(T − ​T​0​​)​​ in set-
tings when both ​​T​0​​​ and ​T − ​T​0​​​ are large. 
Similar to difference in differences, the 
bias-correction procedure of Chernozhukov, 
Wüthrich, and Zhu (2019b) adjusts for dif-
ferences in pre-intervention outcomes 
between the treated unit and the synthetic 
control. Confidence intervals are based on 
an asymptotically pivotal ​t​-statistic and cen-
tered on the average of ​K​-fold cross-fitted 
versions of the bias-corrected synthetic con-
trol estimate. Cattaneo, Feng, and Titiunik 
(2021) propose predictive intervals for 
synthetic control estimators and related 
methods. They adopt a predictive model 
​​Y​ 1t​ 

N ​​ = ​​P​ t​ 
N​​ + ​​u​t​​​, where ​​P​ t​ 

N​​ depends on 
observed predictors and unknown parame-
ters, and ​​u​t​​​ is an unobserved random error. 
Their predictive intervals for ​​​τ ˆ ​​1t​​​ = ​​Y​1t​​​ − ​​Y​ t​ N​​  
(with t > ​​T​0​​​) take into account estima-
tion uncertainty about the values of the 
parameters in ​​P​ t​ 

N​​ as well as irreducible 
uncertainty about the value of ​​u​t​​​.

J → ∞​ if there are weights, ​​w​2​​, … , ​w​J+1​​​ that asymptotically 
recover ​​Z​1​​​ and ​​μ​1​​​ and are increasingly diluted among the 
units in the donor pool.

Other Contributions. In this article, I 
have provided a brief description of selected 
strands of the literature on synthetic con-
trols and related methods, starting with 
the canonical estimator in sections 2 and 3, 
and describing some extensions and related 
methods in the current section. The litera-
ture is vast in its totality, however, and there 
are many noteworthy contributions I did 
not cover. They include Bai and Ng (2019); 
Brodersen et al. (2015); Gobillon and Magnac 
(2016); Gunsilius (2020); Kennedy-Shaffe, 
de Gruttola, and Lipsitch (2020); Viviano 
and Bradic (2019); and Xu (2017), among 
many others. Samartsidis et al. (2019) study 
the performance of the canonical synthetic 
control estimator and related methods in the 
context of the German reunification exam-
ple of subsection 3.2. As the set of methods 
on synthetic controls keeps expanding and 
enriching the applied econometrics tool-
kit, this is still a young literature and much 
remains to be done. I mention some open 
areas in the final section of this article.

9.  Conclusions

Synthetic controls provide many practical 
advantages for the estimation of the effects 
of policy interventions and other events of 
interest. However, like for any other sta-
tistical procedure (and especially for those 
aimed at estimating causal effects), the cred-
ibility of the results depends crucially on the 
level of diligence exerted in the application 
of the method and on whether contextual 
and data requirements are met in the empir-
ical application at hand. In this article, I 
emphasize the notion that mechanical appli-
cations of synthetic controls that do not take 
into account the context of the investigation 
or the nature of the data are risky enter-
prises. To this end, the article discusses the 
methodological underpinnings of synthetic 
control estimators and the conditions under 
which they provide suitable estimates of 
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causal effects. It also describes how the anal-
ysis may be modified in the cases when those 
conditions do not hold. Finally, the article 
discusses some recent extensions that widen 
the applicability, robustness, and flexibility of 
the method.

Open areas of related research abound, 
both methodological and empirical. Results 
on sampling-based inference, external valid-
ity, sensitivity to model restrictions, esti-
mation with multiple interventions, and 
the identification of the channels though 
which the effect of an event or intervention 
operates, to mention a few, are scant or 
absent in the synthetic controls literature. An 
area of recent heightened interest regarding 
the use of synthetic controls is the design of 
experimental interventions in settings where 
the intervention of interest can only be 
applied to one or a small number of aggre-
gate units. In addition, existing results on 
robust and efficient computation of synthetic 
controls are scarce, and more research is 
needed on the computational aspects of this 
methodology. On the empirical side, many 
of the events and policy interventions econ-
omists care about take place at an aggregate 
level, affecting entire aggregate units like 
school districts, cities, regions, or countries. 
This is exactly the setting synthetic controls 
were designed for, and potential applications 
of synthetic controls in economics are many.
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