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Abstract

Agent-based modeling has become increasingly popular in recent years, but
there is still no codified set of recommendations or practices for how to
use these models within a program of empirical research. This article
provides ideas and practical guidelines drawn from sociology, biology,
computer science, epidemiology, and statistics. We first discuss the
motivations for using agent-based models in both basic science and policy-
oriented social research. Next, we provide an overview of methods and
strategies for incorporating data on behavior and populations into agent-
based models, and review techniques for validating and testing the sensi-
tivity of agent-based models. We close with suggested directions for future
research.
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Introduction

Agent-based models are computer programs in which artificial agents inter-

act based on a set of rules and within an environment specified by the

researcher (Miller and Page 2007). While these rules and constraints describe

predictable behavior at the micro level, the interactions among agents and

their environment often aggregate to create unexpected social patterns. It

is such emergent patterns that sociologists want to understand or policy mak-

ers want to change (e.g., patterns of residential segregation, the intergenera-

tional reproduction of inequality, or the origin and persistence of disease

epidemics). Because agent-based models explicitly link individuals’ charac-

teristics and behavior with their collective consequences, they provide a

powerful tool for exploring the social consequences of individual behavior.

While agent-based modeling is not new to sociology (see Macy and

Willer 2002 for a comprehensive review of early work), these models tend

to be highly stylized and—with the exception of Schelling’s (1971, 1978)

seminal work on neighborhood tipping and Axelrod’s model of cooperation

(Axelrod 1997; Axelrod and Dion 1988; Axelrod and Hamilton 1981)—have

had minimal impact on mainstream sociological research. One reason for this

lack of impact is the absence of dialogue between agent-based modeling and

data-driven social research within the discipline.1 This is unfortunate, as

agent-based models are very useful for sharpening one’s thinking about an

empirical problem and identifying key explanatory mechanisms. Agent-

based models help fill the gap between formal but restrictive models and rich

but imprecise qualitative description (Holland and Miller 1991, cited in Page

2008). Moreover, agent-based models are especially amenable to incorporat-

ing detailed, multilayered empirical data on human behavior and the social

and physical environment, and can represent a granularity of information and

faithfulness of detail that is not easily handled within statistical or mathemat-

ical models.

The goal of this article is to provide a practical overview of how agent-

based models can be used within a larger program of empirical research.

We proceed as follows. First, we discuss reasons to use agent-based models

in both basic science and more policy-driven research, and describe the kinds

of substantive and methodological problems where agent-based models are

particularly helpful. Next, we review the different ways in which agent-based

models can be anchored to real-world information: ‘‘low-dimensional rea-

lism’’ in which there is empirical realism along one or two dimensions but

the model remains simple and abstract; or ‘‘high dimensional realism’’ in

which the goal is to accurately represent some phenomenon along many
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dimensions. We also provide concrete strategies for constructing agent-based

models that correspond to real populations and incorporating empirical data

on individual behavior into agent-based models. Finally, we discuss state-of-

the-art techniques to assess both the goodness of fit of these models to data

and their sensitivity to key assumptions. We close with some suggested

directions for future research.

Modeling Interdependent Behavior

A key feature of agent-based modeling is that it explicitly links micro and

macro levels of analysis. Sociology has a long-standing interest in the rela-

tionship between individuals’ motivations and decisions and large-scale pat-

terns of social organization and change.2 The ‘‘micro–macro problem’’

concerns how to explicitly account for the ways in which actions of individ-

uals give rise to social organization and dynamics, rather than assuming that

macro-level phenomena are simply aggregates of individual characteristics

and behavior (Coleman 1994:197; Granovetter 1978:1421; Hedström and

Bearman 2009:9-14). The connection between individuals’ actions and their

collective consequences would be transparent if one could simply sum over

individuals’ intentions or behavior to generate expected population-level

attributes.3 The problem is that nearly all human behavior is interdependent;

individuals’ actions are contingent on the past, present, and predicted future

behavior of others.4

Contingent behavior can take on a number of different forms. For exam-

ple, people have preferences for the composition of social groups (e.g.,

friendship circles, neighborhoods, or churches), but their own characteris-

tics also contribute to group composition. Accordingly, any decision to join

or leave the group is both responding to and changing its composition.

More generally, individuals’ actions are constrained by the social context

(e.g., network structure, social institutions, and demographic composition)

that shapes available opportunities for action. But this social context is pro-

duced (and reproduced) from the accumulation of people acting in the past.

Thus, interdependent behavior implies feedback between micro and macro

levels of analysis. In the short run, individuals respond to their environ-

ments; in the longer run, the accumulation of individuals’ choices or beha-

vior changes the environment. This feature makes standard statistical

models that assume independence of observations or unidirectional causal-

ity inappropriate for analyzing the relationship between micro and macro

levels of analysis. Feedback also often implies a nonlinear relationship

between individual behavior and its macro consequences. Models that seek
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to explain the social consequences of interdependent behavior must expli-

citly represent feedback between individuals’ actions and their decision-

making environments.5

The explicit representation of how micro-level processes generate

larger scale social dynamics is a hallmark of mechanism-based explana-

tions (cf. Elster 2007; Hedström and Udehn 2009; Hedström and Yli-

koski 2010). In essence, mechanisms explain some social phenomenon

in terms of a dynamic and robust process through which individual inter-

actions compose some social aggregate (Hedström and Swedberg 1998).

In addition to various forms of feedback (e.g., tipping, contagion, diffu-

sion, self-fulfilling prophecy, tragedy of the commons), other mechan-

isms in sociological research include selection (Hedström and Bearman

2009), offsetting (Bruch 2013), vacancy chains (e.g., White 1970), and

network externalities (Dimaggio and Garip 2011). A good explanation

of a social phenomenon specifies the conditions necessary for the social

phenomenon to arise and how those conditions depend on both individ-

uals’ behavior and the distribution of salient social attributes within the

population.

Agent-based models allow researchers to explicitly investigate how and

why a given set of interactions among individuals generates some collective

result. One can also explore how alternative assumptions regarding popula-

tion constraints (e.g., the sex ratio of students within a classroom, or number

or proportion of minority groups in a city) affect observed dynamics. In addi-

tion, because the models are usually built from the ground up, they bring into

sharp relief our ‘‘implicit models,’’ that is, latent assumptions regarding indi-

vidual traits and behavior, the nature of interaction among individuals, and

the environment in which the interaction takes place. Finally, when used

iteratively within an empirical research program, an agent-based model can

be a powerful tool to help guide specification of statistical models and data

collection efforts. In many empirical research problems, we face one of the

two related dilemmas. On one hand, we may have large amounts of data, but

we do not know which statistical models to run. We make model specifica-

tion decisions not knowing which decisions are truly consequential. On the

other hand, often our ideas about human behavior are much richer than avail-

able data. In both instances, agent-based models can help. In the first

instance, we can experiment with simulated data to see what difference our

assumptions about individual behavior make for aggregate outcomes. In the

second instance, individual-level data, combined with alternative behavioral

assumptions and aggregate data, may be used to simulate aggregate out-

comes that can be compared to observed data.6
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Feedback Effects and Public Policy

Beyond pure academic interest, there is a practical need for models that allow for

contingent behavior of individuals and feedback between micro and macro lev-

els of analysis. Within a number of fields, most notably epidemiology and public

health, there is an increasing acknowledgment that our current methods of

designing, evaluating, and implementing policy do not work and may potentially

even make things worse (e.g., Deaton 2010; Fenichel et al. 2011; Homer and

Hirsch 2006; Mabry et al. 2008; Sterman 2006). A major roadblock in the devel-

opment of more effective policy is that most social problems exhibit a dynamic

complexity that hinders our ability to identify underlying causal relationships.

Dynamic complexity does not imply many moving parts so much as the intercon-

nectedness among parts (Forrester 1971). This is apparent in both self-reinfor-

cing cycles for individuals (e.g., perceived job insecurity is associated with

poorer health, and poor health affects labor market performance, Burgard,

Brand, and House 2009) and in neighborhood ‘‘spillover effects’’ where disad-

vantage along one dimension of neighborhoods (e.g., high vacancy rates and low

property values) exacerbates inequalities along other neighborhood dimensions

(e.g., school funding and school quality), thus contributing to the cycle of poverty

(Durlauf 1993, 1995). Poverty traps and other self-reinforcing cycles of disad-

vantage can make it difficult to identify the most effective points of intervention.

Moreover, people may change their behavior in response to an intervention,

and failure to anticipate this can lead to undesirable and unexpected out-

comes.7 Within public health, there is evidence that low-fat foods may have

contributed to the obesity epidemic as people ate larger quantities than they

would have otherwise (La Berge 2008). Within criminology and sociology,

there is some controversial evidence that Section 8 housing programs led to

an increase in neighborhood violence in some cities, as the program moved

people from high-poverty neighborhoods into moderately poor areas. It is in

these areas where the number of social problems (e.g., neighborhood violence)

increases nonlinearly with the poverty rate (Galster 2005; Rosin 2008). By

keeping the total number of high-poverty neighborhoods fixed, but increasing

the poverty rate in medium-poverty areas, the vouchers may have inadver-

tently led to a net increase in violent crime across all poor neighborhoods.

Agent-based models and other methods such as system dynamics may be

able to identify potentially self-reinforcing behaviors or feedback loops, and

suggest better designs for policies based on identification of major flaws in

existing ones. More modestly, these models can allow for a relaxation of

unrealistic assumptions made in more traditional models. For example,

classical epidemiology models assume random mixing and relatively

190 Sociological Methods & Research 44(2)



homogenous populations. Agent-based models allow for heterogeneous

agents with more realistic behavioral responses and varying risk profiles.

A key advantage is that agent-based models can integrate data and theories

from many different sources and at many levels of analysis. Finally, agent-

based models can demonstrate trade-offs, efficiencies, or links between pol-

icies and theoretical concepts.

The most successful policy-driven agent-based modeling projects to date

have come from epidemiology and urban planning. Within epidemiology, the

Models of Infectious Disease Agent Study (MIDAS) draws together multiple

interdisciplinary teams of researchers at different sites to investigate how to

use computational and mathematical models of disease transmission to under-

stand infectious diseases.8 The network of researchers developed a number of

agent-based models that incorporate detailed geographic, demographic, social,

biological, and epidemiological information to model the spread of disease.

These models have been particularly influential in exploring potential response

scenarios for disease outbreaks during the H5N1 and H1N1 flu scares. For

example, the global scale agent model developed at Brookings played a key

role in analyzing both the H1N1 and avian flu outbreaks, modeling both the

predicted spread of the disease and the potential costs and benefits of specific

interventions (e.g., school closures or the allocation of scarce vaccines). See

Epstein (2009) for more details.9

In the area of urban planning, the UrbanSim model developed by Paul Wad-

dell and his collaborators (Waddell 2002) represents the state of the art in

agent-based models of urban policy, transportation, and development. Urban-

Sim was designed to be an experimental laboratory for the analysis of policies

related to city infrastructure and investment (Borning, Waddell, and Forster

2008). The model blends empirically grounded modules describing processes

at the person level (e.g., individuals’ decisions regarding place of work and

residence, job choice, and transportation), organization level (e.g., business

birth and death, relocation, and development), infrastructure level, and housing

market (e.g., real estate prices) with a highly realistic geographic landscape. It

has been influential in guiding decisions regarding urban transportation invest-

ments such as light rail, freeway extension, and changes in land use zoning

(Borning and Waddell 2006).

High- Versus Low-dimensional Realism in Agent-based
Models

A key issue for the analyst is the appropriate level of model complexity and

empirical realism. These are by no means the same; a model may be
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relatively simple, but its few dimensions can be firmly grounded in empirical

data, or complex phenomena may be modeled with only anecdotal evidence.

The appropriate levels depend on the research question and intended use of

the model. Agent-based models range from abstract worlds where agents are

defined by a single attribute, have simple deterministic rules for interaction,

and exist in a highly stylized environment (e.g., a grid or torus) to simple

worlds where agents have only one or two attributes and behaviors anchored

to as many empirical features as possible to high-dimensional worlds where

agents have many attributes, the environment contains a great deal of infor-

mation and may even have its own dynamics, and agents engage in a variety

of different behaviors.

The degree of empirical realism desired in the model depends on its analyti-

cal and empirical goals. Models should be designed with a specific question in

mind. At one extreme, empirically validated agent-based models may be used as

a virtual ‘‘laboratory’’ to test the implications of a policy intervention or predict

future population dynamics. For example, the MIDAS study enlisted a team of

subject matter experts to develop an empirically rich model of disease spread,

and this model is used to anticipate the spread of epidemics and explore alterna-

tive disaster response scenarios (Epstein 2009). Similarly, the Artificial Anasazi

project marshaled substantial archeological, anthropological, and ecological

data to explore the rise and fall of the Anasazi culture in the Long House Valley

in northeastern Arizona between 1800 BC and 1300 AD (Dean et al. 2000). Both

models were subject to intensive validation and testing.

At the other extreme, simple, abstract models allow for the clarification or

development of new theories or mechanisms. Schelling’s (1978) famous tip-

ping model, which allowed for two groups to sort themselves across a grid in

accordance with their preferences about the composition of their neighbor-

hoods, demonstrated how even seemingly tolerant agents can generate highly

segregated neighborhoods. Axelrod’s prisoners’ dilemma tournament model

pitted different strategies against one another to show how cooperation can

emerge and even thrive in a world of self-interested agents (Axelrod and

Hamilton 1981). More recently, the research program spearheaded by

Michael Macy (e.g., Centola and Macy 2007; Centola, Willer, and Macy

2005; Willer, Kuwabara, and Macy 2009) uses simple agent-based models

to illuminate theoretical properties of game theoretic and network models.

In these examples, the goal is not to reproduce existing patterns or even to

anchor agents’ behavior, characteristics, or environment in empirical knowl-

edge. Rather, the models are generative; they develop new ways of thinking

about a problem and provide a great deal of theoretical stimulation for exist-

ing empirical research.
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Between these two extremes are models that incorporate one or more

dimensions of realism but keep other aspects of the model abstract. Often

these ‘‘low-dimensional realism’’ models are aimed at exploring the implica-

tions of empirical research or testing the assumptions of formal theories. For

example, Epstein et al. (2008) uses a relatively simple model to demonstrate

that when one takes the traditional epidemic model, which assumes perfect

mixing and fixed behavior, and adds adaptive behavior, whereby agents may

hide from disease or flee to a safer area, this changes the dynamics in ways

that more closely approximate the dynamics observed in the Spanish flu and

other historical epidemics. Todd and Billari (2003) explore how empirically

plausible mate-search heuristics give rise to population-wide patterns of age-

at-marriage distributions. Hedström and Åberg (2005) take a somewhat

empirically richer approach, in which they assign agents the social and

demographic characteristics of Swedish youth in the Stockholm metropolitan

area, and explore how empirically grounded rates of leaving unemployment

vary under alternative assumptions about social interactions. The goal of in

all cases, however, is not to reproduce empirical patterns or incorporate all

aspects of reality so much as to understand the implications for social

dynamics of one or more empirical observations or stylized facts.

Coming from a conventional social research background, the most seductive

approach often is to create agent-based models that incorporate as much empiri-

cal data and knowledge as possible in an attempt to create a highly realistic

laboratory in which to conduct experiments. However, this approach is rarely

the most fruitful line of inquiry. For one thing, our data and knowledge of human

behavior are almost never up to the task. While social scientists are good at col-

lecting demographic, biological, and social characteristics of discrete units such

as individuals, families, or other social groupings, we are often missing data on

key mechanisms governing interaction among those units. As mentioned above,

one advantage of agent-based modeling is that it allows researchers to hypothe-

size about the importance of mechanisms for which there are no data (and assess

the potential value of collecting these data). Second, layering on many dimen-

sions of realism can make the model cumbersome, and it can be difficult to get

clear analytic results. A model’s success is determined not by how realistic it is

but by how useful it is for helping understand the problem at hand.10

One useful heuristic for determining the appropriate level of model com-

plexity and realism is to consider what motivated the agent-based model in

the first place. Simulations are useful in three different circumstances. First,

when some micro-level behavior is known or strongly assumed and simula-

tion explores its aggregate consequences. In this case, a simple abstract

model or a ‘‘low-dimensional’’ realism model is often most effective.
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Second, when some aggregate phenomenon is observed empirically, and the

simulation investigates alternative mechanistic explanations. In this case, a

low-dimensional model may be illuminating but cannot rule out all alterna-

tive explanations. Finally, simulations are useful when the analyst must

explore the behavior of a social system under some hypothesized conditions

for predictive or policy purposes. In this case, a ‘‘high-dimensional’’ realism

model is usually necessary. In the balance of this article, we focus on empiri-

cally grounded models aimed at addressing questions of the second or third

type.

Empirically Grounded Agent-based Models

Agent-based models can incorporate a wide range of empirical measures,

including but not limited to rates such as age-specific mortality, fertility, and

disease risk; population size and demographic composition; geographic

boundaries and spatial relationships; inputs into dynamical processes (e.g.,

estimated payoffs to educational investments); granularity of time (e.g., how

often agents make decisions, and to what extent to agents act simultaneously

or asynchronously); individuals’ preferences, behavior, memory, and/or abil-

ity to perceive and detect environmental change; the organization of labor,

marriage, or housing markets; and social network structure. Of course, some

features of the model are easier to anchor in data than others. The primary

constraint is the availability of high-quality data at the appropriate unit of

analysis. To illustrate how one might incorporate empirical data into an

agent-based model, we focus on two features of agent-based models that

have been most frequently grounded in past work: individual behavior and

population characteristics.

Incorporating Population Characteristics

The actors that populate agent-based models are typically assigned some set

of attributes such as a sex, age, education, income, life expectancy, disease

risk, or network position. The analyst may assume an arbitrary distribution

of agent attributes, or he or she can import the joint distribution of agents’

attributes from an empirical data source.11

Survey data typically document the characteristics and attitudes of indi-

viduals, households, or families and thus it is relatively straightforward to

assign agents characteristics from these data. However, survey data are a rel-

atively small sample; more often scholars prefer to use population (Census)

data to initialize agents. For U.S. populations, one can initialize the agents
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using data from the U.S. Integrated Public Use Microdata Series (IPUMS),

which is a 5 percent sample of all U.S. households. For U.K. populations, one

can use the U.K. Sample of Anonymized Records Census data. However,

while these sources provide Census data at the individual, household, or fam-

ily level, they do not contain detailed geographic identifiers. The smallest

geographic identifier available for U.S. Census data is IPUMS’ Public Use

Microdata Area, which contains approximately 100,000 people each.

A key challenge in initializing agent-based models using Census data is

adapting the aggregated or discrete nature of these data to a more finely

grained context. Individual-level Census data are publicly available at

smaller units of geography (i.e., blocks, block groups, tracts) only in the form

of aggregated, multiway tables. Thus, if the researcher wants to initialize her

agent population with more than a single attribute (e.g., race/ethnicity or

household income), these tables typically do not contain the full joint distri-

bution of household or population traits.12 Also, continuous attributes are

often collapsed into discrete categories. The smaller the geographic unit

identified, the less information is available and the more collapsed the vari-

able categories are. For example, one might know the marginal distribution

of categorical household size and the marginal distribution of categorical

household income within identified Census tracts, but not the joint distribu-

tion of household size and household income.

Fortunately, there are well-developed methods for converting a set of

incomplete marginal tables into a full table when the joint distribution of

variables is known from a separate source. The most common method for

generating individual-level data from incomplete tables on populations is

table standardization using iterative proportional fitting (e.g., Agresti

2002:345-46; Beckman, Baggerly, and McKay 1996; Deming and Stephan

1940; Fienberg 1970; Ireland and Kullback 1968). This approach was used

in the National Institutes of Health–funded MIDAS study to generate an

agent-based model with a population that included every household and indi-

vidual in the U.S. population in 2000, as well as schools and workplaces gen-

erated to match counts at the Census block-level area of geography (Wheaton

2009; Wheaton et al. 2009).13 The MIDAS micro-population data are avail-

able by request from RTI International. However, the data were constructed

using specific criteria to assign households to block groups, and thus the fit is

optimal for only a narrow subset of Census variables (Wheaton et al. 2009:7).

Finally, agents can be assigned social networks that correspond to some

data source; for example, the sexual or friendship networks collected in the

National Longitudinal Study of Adolescent Health (Add Health). This net-

work information may be read into the agent-based model the same way that
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population characteristics are initialized. While networks may correspond to

some empirical social structure at the beginning of the model, they can also

evolve over time based on subsequent agent interactions. Realistic data on

social networks have been used in policy-driven agent-based models of dis-

ease transmission and epidemics (e.g., Cauchemez et al. 2011; Eubank et al.

2004; Ferguson et al. 2005; Germann et al. 2006), and this represents a poten-

tially fruitful direction for future work.

Specifying Agent Behavior

Another rich area of investigation within agent-based modeling research is to

explore the population dynamics implied by a given set of empirical prefer-

ences or behaviors (e.g., Benenson and Torrens 2004; Bruch and Mare 2006,

2009; Schelling 1978). Thus, a key challenge is specifying appropriate activ-

ities for the individual actor. If the goal of the modeling exercise is to explore

the macro-level consequences of some theorized preference or behavior, the

analyst may prefer to assume a set of behaviors that correspond to the under-

lying theory. However, if the goal is to understand the aggregate conse-

quences of real-world phenomena, it is critical to specify agents’ actions in

a way that is empirically defensible (Hedström and Åberg 2005:118-99).

Agents typically gather information about their environment, assess that

information according to some set of criteria or ranking system, and then

make decisions based on their assessment. They may also learn from past

experiences and update their behavior. Empirical information can potentially

enter into each stage of this process.

One useful strategy is to assume that agents’ preferences, strategies, or

likelihood of making a particular choice or state transition are based on a sta-

tistical model. If the agent-based model is aimed at modeling discrete

changes in agents’ attributes—for example, entering or exiting a state of

unemployment, getting married or divorced, or having a child—these state

transitions can be defined based on coefficients from a discrete-time event

history model (Allison 1982; see also Hedström and Åberg 2005). If the

agent-based model is aimed at capturing agents’ decision-making process,

discrete choice models provide one flexible framework for estimating

the parameters of choice behavior (Louviere, Hensher, and Swait 2000;

McFadden 1973; Train 2009). These models have become increasingly

sophisticated in recent years, and can allow for variation in individuals’

knowledge of available options, strategies for learning about or evaluating

available options; reactions to change in environmental conditions; reactions

to past experiences; and susceptibility to social influence. Estimation of
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relevant coefficients requires information on either revealed preferences

(observed choices) or stated preferences (survey responses to hypothetical

choice scenarios) for some population of interest. These data may be

obtained from surveys, observational data, or administrative records. Multi-

ple sources of data on behavior or preferences may be combined in specify-

ing agents’ behavior.

Given some defined set of alternatives, discrete choice models specify a

ranked ordering of these choice outcomes, which can be converted into pre-

dicted probabilities. However, in order for agents to make a realized choice,

these probabilities must be transformed into actual decisions. One method of

doing this is to sample from a multinomial distribution where the probability

for each outcome is computed using the choice model coefficients. Sampling

from predicted probabilities incorporates a random component into the

choice process, consistent with the specification of discrete choice models.

The random component may be interpreted as the fact that agents may make

mistakes or that the choice model does not reflect all dimensions of a choice

that affect its desirability. Alternatively, one can assume that the probabilities

computed from the choice model accurately reflect the underlying desirabil-

ity of alternatives, and agents make decisions without error. In this case, one

might specify that agents always ‘‘take the best’’ outcome, that is, they

choose the outcome with the highest calculated utility.

A different strategy for modeling decision making is to specify that

agents’ behavior follow some set of rules, for example, heuristics that update

behavioral rules according to the accumulation of experience (Todd, Billari,

and Simao 2005). Heuristics are ‘‘rules of thumb’’ for making decisions

under conditions of uncertainty (Kahneman, Tversky, and Slovic 1982).

Heuristics are used both in the information-gathering stage of decision mak-

ing and when making the final choice. Typically, heuristic decision-making

strategies must be used in conjunction with a set of assumed or revealed pre-

ferences for agents to rank order outcomes by desirability. For example, in

marriage market models, one concern is how to best choose a marriage part-

ner when potential mates can only be explored one at a time, and there is

uncertainty about whether the next person down the pipeline will be better

than what is currently available. One strategy is to use a ‘‘satisficing’’ heur-

istic; give agents only a preference for members of the opposite sex and then

let the initial period of interaction be one of learning about the market (e.g.,

treat the first dozen or so encounters or ‘‘dates’’ agents have with the opposite

sex as a learning experience). Agents pick the next agent who comes along

whose quality is equal to the best agent observed during the learning period

(Todd 1997; Todd and Miller 1999).

Bruch and Atwell 197



Finally, agents may also be assigned beliefs, values, or worldviews that

correspond to observations from ethnographic or participant observation,

or in accordance with stakeholders’ assessments. For example, agents in a

model of the intergenerational reproduction of inequality may vary in their

beliefs about the degree to which education can lead to social mobility, or

their understanding of how to go about getting a job. In practice, these beliefs

or worldviews would be programmed as a set of rules governing action. For

example, an agent who believes that networks are most important for job see-

kers may spend their time attempting to develop ties with other agents,

whereas an agent who believes credentials are key to success may focus

on education. Unlike in the statistical model of behavior based on quantita-

tive data, the qualitative data are incorporated into the agent-based model

loosely as a set of rules governing behavior, or alternatively as a set of rules

for interpreting information. However, agent beliefs, worldviews, or values

may be coupled with a statistical or heuristic model of decision making. For

example, if qualitative data were available on how the time horizon an indi-

vidual uses to make a decision varies with their degree of uncertainty about

outcomes and perception that things are improving or deteriorating, the

appropriate time horizon could be used to adjust the inputs to a statistical

model of behavior. See Yang and Gilbert (2008) for more on qualitative data

and agent-based models and Geller and Moss (2008) for an example of agent

behavior that is empirically grounded using a stakeholder approach.

Assessing Model Output: Uncertainty, Variability,
and Sensitivity

After specifying an agent-based model and providing inputs (i.e., initial pop-

ulation distribution, physical or social environment, and agent behavior), one

needs to produce and make sense of the model outputs. At the lowest level of

granularity, agent-based models can output the distribution of agents and their

associated states at every time point. This is often an unwieldy amount of data,

and its granularity can outstrip the theoretical and empirical knowledge that

was used to create the model.14 It is often more useful to summarize output

as population level or subgroup statistics or as a modal experimental trajectory

taken by an agent who fits a given profile. For example, the spatial distribution

of agents can be summarized into a single measure of segregation or a set of

local neighborhood composition measures. Alternatively, one could track the

trajectory of neighborhoods a typical agent experiences over the duration of

the model. In applications of crime dynamics, one might capture overall crime

rates within a stylized city, or look at neighborhood-specific rates. At the micro
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level, one might examine the modal criminal career for an agent. Regardless of

what types of output one chooses, variability in those measures needs to be

considered in light of uncertainty about model inputs. Empirical measures and

knowledge of key parameters or processes are often vaguely defined, mea-

sured with error, or completely unknown. This uncertainty generates statistical

bounds on model outputs. In the remainder of the section, we discuss different

forms of uncertainty and stochastic variability in agent-based models, and how

to assess their effect on model inference.

There are two sources of uncertainty in agent-based models: input uncer-

tainty and model uncertainty (McKay, Morrison, and Upton 1999). Input

uncertainty—also known as epistemic uncertainty (Helton et al. 2006)—

arises due to incomplete knowledge of model input parameters; for example,

the parameter estimates from a behavioral model estimated from survey data

will represent point estimates with associated standard errors. Alternatively,

the data used to initialize the model may have some uncertainty due to sam-

pling variability. Model uncertainty arises because the model typically

requires some set of unverifiable assumptions about key parameters, pro-

cesses, or social interactions. Thus, this source of uncertainty is associated

with the architecture of the model. Model uncertainty and input uncertainty

imply that there are a number of alternative specifications of the model pos-

sible, and these alternatives may generate variability in the outcome of inter-

est (which may include one include more of the outputs discussed in the

previous section). Agent-based models also have a third source of variability

due to the stochastic elements of the model. Stochastic variability refers to

the variation in model estimates that occurs from randomness within the

model. For example, if agents’ choices are realized from probabilities, there

will be fluctuation from model run to model run due to random sampling.

Input Uncertainty

There is a well-developed literature aimed at assessing the implications of

input uncertainty (Helton et al. 2006; Marino et al. 2008; Saltelli et al.

2004, 2008). The overarching goal is to assess what inputs and initial condi-

tions are critical for the model results. This approach breaks down into two

types of analyses. Uncertainty analyses examine the total variability in the

model output that can be attributed to uncertainty in model inputs. Sensitivity

analyses explore how uncertainty in the output of a model can be allocated

across different sources of model input (Saltelli et al. 2004, 2008). The setup

is the same for both and typically one first does an overall uncertainty anal-

ysis and then focuses on key parameters via sensitivity analyses.
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Input uncertainty is most commonly assessed via Monte Carlo sampling

procedures whereby the analyst varies input values systematically, reruns the

model, and then examines how the distribution of model outputs vary with

model inputs. The first step is to specify the known or assumed joint distri-

bution of parameters of interest. If nothing is known about the distribution, it

is best to assume that each parameter follows a uniform distribution. If the

analyst believes a parameter tends to take on a specific value, a normal dis-

tribution may be more appropriate (Marino et al. 2008). The actual sampling

may be done via random sampling, importance sampling, or—as is most

common—Latin Hypercube sampling (Helton and Davis 2003; Mease and

Bingham 2006; Saltelli et al. 2008:76-78). Latin Hypercube sampling allows

for an unbiased estimate of model output uncertainty and requires fewer sam-

ples to accomplish this task than random sampling of input parameters

(McKay, Beckman, and Conover 1979). Latin Hypercube sampling first

requires the analyst to partition the distributions of relevant model para-

meters into s > 2 nonoverlapping regions (where each region has the same

density), and then sample one value from within each region without replace-

ment. If k is the number of parameters, then s should be of value at least kþ 1,

but generally is much larger to allow the analyst to examine the influence of

each parameter separately. Typically, this method assumes that sampling is

performed independently for each parameter, although there are methods for

imposing correlations across the sampled values (Iman and Conover 1982;

Iman and Davenport 1982, cited in Marino et al. 2008).

An illustrative example is shown in Figure 1. Let us say that we have three

input parameters of interest, where a * N(ma, sa) and b * N(mb, sb) are

parameter estimates from a discrete choice model, and c * Unif(cmin, cmax)

is the assumed distribution of agents’ consumption thresholds. Let y be some

model outcome of interest. Figure 1 shows the partitioning of the parameters

into s¼ 5 regions, and we randomly sample a value from within each region.

We then combine randomly sampled values to generate our s by k (in this

example, a 5 � 3) input matrix X, where Xj¼ af j;bj; cj

�
. We then run the

agent-based model for j ¼ 1, 2, . . . 5, each time using a set of parameters

Xj. We record the model outputs yj for each of the five runs to generate

y ¼ y1; y2; y3; y4; y5gf . This distribution of outputs reveals the impact of

input uncertainty on model estimates because variation in the yi’s shows the

model to be sensitive to which parameter combinations we are starting with.

The simplest way to examine the distribution of output values is via a histo-

gram, which provides an overall measure of model uncertainty, or scatter-

plots where the distribution of model output is plotted against the

distributions for each of the input variables (which provides a qualitative

200 Sociological Methods & Research 44(2)



assessment of model sensitivity to a particular input value). For a more rig-

orous quantitative assessment, a variety of statistical techniques can be used,

including correlation coefficients and decomposition of model output var-

iance. Details and discussion of these techniques can be found in Saltelli

(2002), Saltelli et al. (2004, 2008), and Marino et al. (2008).

Figure 1. Latin hypercube sampling for uniform and normal PDFs. Note: This figure is
adapted from Marino et al. (2008).
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Model Uncertainty

If the goal is to assess the degree to which uncertainty in the architecture of

the model (e.g., assumptions about functional forms, sequencing of events, or

initial population distribution) generates uncertainty in model output, model

uncertainty can be handled in ways similar to input uncertainty. However,

rather than simply sampling values from a known or assumed distribution,

the analyst will run the model under alternative assumptions about model

architecture. For example, the analyst can run the model under varying

assumptions about population size or the shape of neighborhoods to assess

the extent to which these factors affect conclusions about residential segrega-

tion (Fossett and Dietrich 2009; Laurie and Jaggi 2003). An alternative

approach is to use Bayesian model averaging (Hoeting et al. 1999; Raftery

1995) to average over all possible values of parameters and model specifica-

tions based on their likelihood of generating the data. Bayesian model aver-

aging was originally developed as a method of accounting for uncertainty in

statistical models, but it could be adapted to agent-based models by replacing

the likelihood function with a comparison between simulated and observed

data. This procedure is called approximate Bayesian computation. The tech-

nical details are beyond the scope of this article, but more information can be

found in Toni et al. (2009); also see Sisson, Fan, and Tanaka (2007).

Stochastic Variability

Most uncertainty and sensitivity analysis techniques were developed for

deterministic models. Because agent-based models often contain a stochastic

element—for example, the initial distribution of agents across the landscape

may vary over model runs, or probabilities may be sampled randomly from a

multinomial distribution—there is often fluctuation in model output across

model runs. Sometimes this fluctuation is a property of the phenomenon

being studied; path dependence within the model may result in meaningful

output variability and is interesting in its own right. In other instances, fluc-

tuation is not meaningful and merely the result of stochastic elements of the

model. In our experience, this fluctuation will be less apparent if the agent

population size is sufficiently large and if the model output is summarized

into aggregate summary measures.

However, if the population is small or the analyst is interested in individ-

ual- or locally based measures, this stochastic variation will lead to a distri-

bution of output measures even with the same input values. The simplest way

to account for this is to run each model setting multiple times and then
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analyze the resulting model trajectories. To reduce variability from random

fluctuation, one can average over the distribution of estimated output values

for a given set of input values (Marino et al. 2008). While it is common for

agent-based modelers to explore how model output changes under a few

alternative assumptions about key model inputs, only a handful of research-

ers have done rigorous sensitivity analyses. All of these are biological or epi-

demiological models. See Marino et al. (2008), Segovia-Juarez, Ganguli, and

Kirschner (2004), Dancik, Jones, and Dorman (2010), and Riggs et al. (2008)

for details.

Model Validation in High- and Low-dimensional
Agent-based Models

Agent-based models, like laboratory experiments, have strong internal

validity. Since the modeler is aware of all aspects of model design, and

since agent-based models make it easy to manipulate different parameters

of the model, one can usually trace the causes of some observed aggregate

process to one or more specific assumptions within the model. Insofar as

one or more model parameters are grounded in empirical knowledge, this

means that the analyst can rigorously explore how realistic assumptions

about behavior, populations, or their environment affect an outcome of

interest under highly controlled conditions. However, all these inferences

are made internal to the model. External validity—the ability to generalize

conclusions from the model to real-world processes—requires substantially

more effort.

Of course, many agent-based models are not designed to reproduce real-

world patterns. Indeed, in a world where theories are poorly developed and at

best only weakly linked to empirical results and statistical models often stand

in for analytic modeling, simple low-dimensional agent-based models can

have substantial payoffs. However, if the aim of the agent-based model is

to make some policy recommendation—even if the goal is just to identify

one or two potentially useful mechanisms for manipulation and not make

predictions—researchers need to trust that the inferences made from the

model reflect actual mechanisms operating in the world. In the case of

low-dimensional, more abstract models, this may require conducting an anal-

ysis external to the agent-based model to assess whether there is empirical

evidence for the mechanisms observed within the model. In the case of

highly realistic models, the goal is typically to compare output from the

model with empirical data to evaluate overall goodness of fit.
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Evaluating Highly Realistic Models

A few requirements must be in place for an agent-based model to be feasibly

evaluated by comparing model output to real-world data. First, the model

must be initialized with a population of agents that correspond to some

known population. Second, the model output must be able to be mapped into

real units of time. If spatial comparisons are desired, then the model environ-

ment must be linked to real space. Finally, of course, the analyst must have

access to field data at the appropriate level with which to do the evaluation.

Typically, some statistic is computed from the model and compared with its

real-world analog. Highly aggregated summary statistics are the lowest bar

of validation criteria. Because of the high level of data aggregation, a wide

range of local conditions may give rise to the same aggregate statistic. One

can compare either the final statistic after some specified time span or the

evolution of that statistic over some time period. For validation at the micro

level, the observed behavior of individual agents in the model can be com-

pared with the behavior of individuals drawn from a comparable population.

For example, if the researcher initialized the agents using a discrete choice

model to describe their behavior, he could reestimate this model from the

agent decisions and see if the coefficient estimates line up. Alternatively, one

can look at trajectories for different types of agents to see if their average tra-

jectory corresponds with observed human behavior.

Between the micro and macro levels of analysis, one can also compare

information about local area statistics; for example, the proportion poor in

a neighborhood or the average test scores in a school. The less stringent test

would be to compare distributions from the agent-based model with data; for

example, the number of high-poverty neighborhoods estimated in the model

and the number of high-poverty neighborhoods observed in the data. Unfor-

tunately, this ignores the spatial distribution of outcomes. The more stringent

criterion would be to go area by area and compare the degree to which the

agent-based model predicted outcomes consistent with the attributes of real

places. Again, one can compare the trajectories of units over time or merely

record their start and end points. Maps may be useful to show geographic

areas where the model did and did not perform well.15

Over the past five years, a number of simulation researchers have offered

detailed, programmatic recommendations for data-based model evaluation

(Richiardi et al. 2006; Troitzsch 2004; Windrum, Fagiolo, and Moneta

2007; an older discussion is available in Carley 1996). However, there is a

fairly well-developed methodology in the atmospheric and physical sciences

aimed at evaluating the results of computer experiments (e.g., Bayarri et al.
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2007a, 2007b; Sacks et al. 1989). This approach has been suggested for

agent-based research (see Berk 2008), but is not widely known or utilized

within the agent-based modeling community. It provides a solid statistical

foundation for the validation exercise and represents the state of the art (Berk

2008:294). We briefly summarize their suggested method below and provide

relevant references for readers who want to pursue more technical details.

See Bayarri et al. (2007b) and especially Berk (2008) for more details. Fig-

ure 2 provides a summary of the steps involved.

The first step of model evaluation is to specify model inputs and para-

meters with associated uncertainties or ranges. Ideally, the modeler has

already done a sensitivity analysis (see the seventh section), so she is aware

of how the model responds to fluctuations in key parameters. In particular,

she knows the distribution of model results, given the degree of empirical

uncertainty in model inputs. (Note that model inputs can include parameter

estimates as well as any key modeling decisions [e.g., assumptions about the

structure of the housing or labor markets or the extent to which an agent has

incomplete information about its environment]). The sensitivity analysis will

Figure 2. Process of Model Evaluation.
Note: This figure is adapted from Berk 2008.
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help determine which modeling decisions are most critical in explaining var-

iation in model results. The model evaluation then takes into account uncer-

tainty in inputs and compares the distribution of model output to the observed

data.

The second step is to determine the evaluation criteria. Researchers will

generally want to include multiple measures of fit at multiple levels of gran-

ularity, and these measures will likely be adapted and refined as the evalua-

tion process proceeds (Bayarri et al. 2007:143). At least one measure will

likely include an overall goodness of fit between the model and the data.

Mean-squared error is one possible statistic, although it is sensitive to outliers

(Berk 2008:296). Summary measures are useful for assessing overall fit, but

they do not provide detailed diagnostic information. For this, more detailed

measures are useful. For example, residuals can be constructed from differ-

ences in expected versus observed characteristics of local areas, specific

agents, or agent types. Note that these statistics may display substantial spa-

tial or temporal autocorrelation, which can be handled via standard statistical

techniques (Cressie 1991).

The third step is to identify real-world data suitable for the model evalua-

tion. The data will preferably be at the same geographic level and time scale

of the model output. Decennial Census data are one likely candidate for com-

paring populations, though these are only available at 10-year intervals.

School enrollment data are available annually, but provide information only

on children’s characteristics. However, these might be used to get some sense

of population distributions within school districts. Other possible data

sources include police reports and other crime data, hospital admissions

records, births and deaths, and of course surveys on relevant populations.

Ideally, the data used to assess the model are not the same as those used to

initialize it, but that is not always possible.

The fourth step is to generate the agent-based modeling estimates for

comparison with real-world data. If the analyst has done a sensitivity analy-

sis, he should already have collected data on how the distribution of model

outcomes varies with uncertainty in model inputs. Note that obtaining this

distribution of model outcomes may require a substantial number of model

runs. When model runs are computationally expensive and the researcher

lacks access to high-performance computing, this approach may not be fea-

sible. One option is to estimate statistically equivalent models using nonpara-

metric statistical techniques that reply on algorithms designed to link model

inputs to model outputs without trying to represent the underlying causal

mechanisms (Breiman 2001; see also Berk 2008:304-5). Finally, the

researcher compares the distribution of model output to the real-world data.
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Of course, we would expect the model to do an imperfect job of predicting

real-world outcomes. However, the ways in which the model estimates

depart from real-world processes may be highly informative and useful for

highlighting parts of the model that might be usefully revised, or point to data

required to improve model fidelity. The process is iterative. The agent-based

model and any associated empirical estimates may be refined based on con-

clusions from the evaluation, and the whole process repeats again.

Evaluating Low-dimensional or Abstract Agent-based Models

While highly realistic models have been widely used in urban studies, epide-

miology, and public health, this approach is less common in sociological

research. Most agent-based models aimed at solving concrete empirical

problems in sociology are not designed to replicate real-world situations,

or predict expected outcomes under alternative policy scenarios. Rather, the

goal is to explore the systems implications of behavioral mechanisms and the

robustness of those mechanisms to changes in the key parameters. Even

when much of the agent-based modeling architecture is informed by

empirics, the purpose of the analysis is not to recreate the process of interest

so much as identify key relationships among the parameters. In this case, one

should resist the temptation to ‘‘validate’’ the model by comparing its output

to empirical, aggregate patterns. Since multiple assumptions at the individual

level can give rise to the same aggregate social dynamics, an agent-based

model has not ‘‘explained’’ some process of interest merely by reproducing

it (Grimm et al. 2005; Jones 2007).16 However, the model can show what

might be expected under a set of empirically plausible assumptions. Rather

than directly comparing model output to empirical data, researchers should

try to determine whether the key relationships or mechanisms highlighted

in the agent-based model seem to be plausible explanations of real-world

phenomena. This often involves an analysis of empirical data that is com-

pletely separate from the agent-based model. In this case, the agent-based

model is more of a theoretical tool used for the generation of hypotheses.

The trick is to figure out what empirical patterns would be consistent with

a given mechanism. This is especially difficult when the focal mechanism is

unobserved. For example, network externalities are rarely observed expli-

citly (e.g., DiMaggio and Garip 2011; Hedström and Åberg 2005). However,

one can still specify hypotheses about what empirical relationships would be

consistent with the observed mechanism. In quantitative models, fixed

effects or statistical controls can help rule out alternative explanations. This

strategy of model validation is useful in situations in which there is good
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aggregate data to test the theoretical relationships implied by the agent-based

model. For example, Bruch (2013) uses both abstract and empirically

grounded agent-based models to explore how between- and within-race

income inequality shapes racial segregation dynamics. She finds that when

there is a sufficiently high level of within-race income inequality, an increase

in between-race income inequality has offsetting effects at the high and low

ends of the income distribution. These offsetting effects attenuate the total

change in segregation resulting from a decrease in between-race income

inequality. To evaluate whether such offsetting effects are operating in

real-world settings, she uses fixed-effects models applied to three decades

of decennial Census data to estimate the relationships among between-race

income inequality, within-race income inequality, and the relative size of

minority groups. While this approach shares the same drawbacks as any

observational study, it does establish some empirical support for the under-

lying relationships observed in the agent-based model.

An alternative approach for testing the validity of mechanisms identified

in the agent-based model is to design an experiment aimed at capturing the

mechanism of interest. This is the strategy used by Todd and colleagues

(Lenton, Fasolo, and Todd 2009; Todd 2007; Todd and Miller 1999) in their

analyses of mate-search strategies and marriage market outcomes. They first

use an agent-based model to simulate outcomes under alternative assump-

tions about the degree of competition. They assume individuals update

beliefs about their own marketability after sequential encounters with poten-

tial mates. They find that when there is greater indirect competition among

same sex mate seekers, individuals are quicker to make their choice and

shorten the initial learning period. To test whether this same result holds

in the real world, they organize a series of speed-dating experiments to see

how differences in levels of competition (e.g., the sex ratio and total number

of participants) affects individuals’ mate choice behavior.

Future Directions and Challenges

Agent-based models are increasingly recognized as valuable tools within

an empirical research program. However, there is no codified set of recom-

mendations for or practices for using these models in empirical research

programs. This article offers a set of suggestions and practical guidelines

for how to conceptualize, develop, and evaluate empirically grounded

agent-based models. Our goal is to bring together literature across a wide

range of fields—including transportation research, epidemiology, biology,
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atmospheric sciences, and statistics—representing ‘‘best practices’’ in this

line of work.

There are several promising directions for future research. One is to make

use of the emerging insights from behavioral economics and cognitive sci-

ence on how people make collect, analyze, and act upon information to

develop agents with more plausible and nuanced human behavior (cf. Payne,

Bettman, and Johnson 1993). Much of our work in sociology has focused

solely on the role of preferences in individual choices and assumed people

have infinite cognitive resources; we have not paid much attention to how

people actually gather information and make decisions. For example, how

do systematic biases in perception of things with near versus far time hori-

zons affect choice behavior and to what extent do individuals learn from

experience or past mistakes? One might specify agents that not only have

tastes but also strategies for action under limited information or learning

mechanisms, and then exploring how these features of human decision-

making matter for social dynamics. Allowing for a more empirical realism

in individual behavior would open up a whole set of interesting theoretical

questions concerning how individuals’ cognitive biases and heuristic strate-

gies for gathering information and making decisions shapes opportunity

structure and the social environment. This topic is especially well suited to

agent-based modeling, given its natural ability to model the coevolution of

individual behavior and social environments.

Another promising application of empirical agent–based models is in

studies aimed at understanding the development and evolution of social net-

works. Structural sociologists argue that the social environment formalized

as networks constrains individual actions and defines the implications of

those actions. Accordingly, the majority of research treats an existing net-

work as an independent variable, rather than an endogenous outcome of

social interaction. However, agent-based models can be used to specify

dynamic networks that explore how social outcomes and structure evolve

given agents’ preferences and opportunities to create ties.17 To date, the most

systematic and ambitious treatment of network change is work by Padgett

and Powell (2012) that uses a simple agent-based model of autocatalysis and

a multiple networks perspective to make sense of emergent phenomena rang-

ing from partnership systems to high-tech clusters.

Another potential research direction is to couple detailed geographic data

with quantitative and qualitative accounts of how people interact with space

to better understand how physical proximity and the layout of cities and other

social environments hinder or facilitate interaction and interdependence

among individuals and groups, and how this process aggregates up to result
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in cooperation or conflict among communities. Space remains an undertheor-

ized aspect of social life: We often take spatial relationships as proxies for

social relationships, but we know very little about how individuals’ orienta-

tion to their physical environment affects social life. Geography may be

especially relevant in applications where agents’ opportunities are con-

strained or defined by geography. This includes studies of residential mobi-

lity, but also marriage markets, employment opportunities, and school

choice. Moreover, there is evidence that geographic barriers such as free-

ways, train tracks, busy intersections, and other features play important roles

in neighboring relationships, social networks, and community dynamics

(e.g., Grannis 2009; Noonan 2005). Agent-based models historically have

represented the agents’ environment as abstract and aspatial; a continuous

space or a discrete space composed of cells arrayed on a grid. However,

modelers are increasingly using explicit geography for a specific city or

region (e.g., Crooks, Castle, and Batty 2008; Robinson et al. 2007). In addi-

tion, detailed sensor data available from cell phones provides rich informa-

tion on individuals’ movement in space, which can be incorporated into

agent-based models (Stanley and Osgood 2011). Capturing how geographic

barriers constrain or enhance interaction patterns may shed further light on

how space conditions social life.

We close with a few words about software, documentation, and replicable

science. There are many software platforms and programming languages that

support the construction of agent-based models. Well-established platforms

like Repast, Netlogo, MASON, and Swarm speed up development time by

taking care of messy background details, but it is also relatively easy to con-

struct a model in environments like R or Matlab. For empirically grounded

models, especially those that realistic geography and populations, languages

Python and R can make the handling and analysis of data easier. Regardless

of what language one chooses, there are several practical introductions to the

modeling process to consult before you begin (cf. Macal and North 2010;

Railsback and Grimm 2011).

A key part of model development is documenting the code. Good docu-

mentation abstracts away from the code and makes the model’s structure and

assumptions apparent. There have been calls for standardization of documen-

tation (cf. Grimm et al. 2006; Richiardi et al. 2006), and one promising

candidate is the Unified Model Language (UML). UML lays out a series

of well-defined and standardized schematics—independent of any specific

programming language—for representing the underlying logic of the model.

This technique has become the gold standard for describing object-oriented

programming code, and agent-based modelers have begun to incorporate
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these diagrams into documentation and publications (Bersini 2012). In addi-

tion, the OpenABM repository is an excellent vehicle for sharing code and

supporting documents.18 However, the adoption of these ‘‘best practices’’

has been slow, and there remains great variation in how models are documen-

ted and shared. All methods would benefit from more peer validation of data

and coding, but because agent-based models have more opportunities for

coding error it is all the more important to allow others to explore and test

models.19 Good practices around documenting and sharing models will help

broaden the appeal and acceptance of agent-based models.
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Notes

1. A few notable exceptions include Hedström and Åberg’s (2005) ‘‘Empirically

Calibrated Agent-Based Models’’; Manzo’s (2007) discussion of the role of

agent-based modeling in theoretically engaged, quantitative research; and Boero

and Squazzoni’s (2005) discussion of the role of empirical data in agent-based

models.

2. Alexander and Giesen (1987, chapter 1) provide a comprehensive overview of

the ‘‘macro–micro’’ problem within sociology, from its early manifestations in

the foundational writings of Marx, Weber, and Durkheim to more recent work.

See also Sawyer’s (2001) historical account of the idea of emergence in sociol-

ogy and philosophy.

3. For example, the decision to wear purple socks on any given day is relatively

independent of what other people are doing. Thus, the expected number of people

wearing purple socks is simply the sum of the probabilities for each person.
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4. The idea of a self-fulfilling prophecy (Merton [1948] 1968) provides a mechan-

ism to explain how beliefs about future events can bring them about via interde-

pendent behavior. See Biggs (2009) for an overview of this model.

5. While our article focuses on agent-based models, there are other methods for ana-

lyzing interdependent behavior, feedback effects, and social dynamics, namely

systems dynamics and various forms of mathematical modeling. We highlight the

key differences among these approaches in Appendix A (which can be found at

http://smr.sagepub.com/supplemental/).

6. See Manzo (2013) for an example of this approach with regard to the effect of

unobserved social interactions on individuals’ educational decisions and result-

ing aggregate patterns of educational inequality.

7. Sterman (2006:506) discusses more examples of policies that failed or were

greatly limited due to a failure to anticipate systematic response.

8. For more information about Models of Infectious Disease Agent Study (MIDAS),

see http://www.nigms.nih.gov/Research/FeaturedPrograms/MIDAS/Background/

Factsheet.htm.

9. The goal of this model was not to generate a specific prediction from a given run

of the model, but rather to allow the analysts to explore potential consequences of

alternative scenarios or assumptions.

10. It can be useful to contrast agent-based modeling with statistical regression mod-

els. We can add as many variables as we like to a regression model, but we make

the simplifying assumption that the errors are independent and identically distrib-

uted. Agent-based models allow us to relax this major assumption, but this intro-

duces enormous model complexity with respect to social interaction that can

make results difficult to interpret. To keep things tractable, one must simplify

on some dimensions.

11. Note that multiple agent types may be present within the same model. In addition

to representing individuals, families, or households, agents can represent institu-

tions and other more aggregated social structures. For example, one can specify a

‘‘school’’ agent that has a set of characteristics as well as a list of associated

pupils, all agents themselves. National Center for Educational Statistics data

on school attributes may be used to assign the simulated schools initial distribu-

tions of resources, safety levels, and student–teacher ratios corresponding to the

schools in a given district.

12. In the United States, the Summary Tape Files contain selected two- and three-

way tables of attributes describing housing units, households, populations, and

families. Similarly, the Small Area Statistics for the United Kingdom have lim-

ited one-way, two-way, and three-way tables.

13. These data will eventually be updated using the demographic data from the

American Community Survey.
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14. Less aggregated measures are often more sensitive to path dependence. For

example, overall levels of residential or school segregation, patterns of assorta-

tive mating, or incidence of disease may be constant from run to run but the

actual distribution of agents in space may vary widely due to random variation

in initial distributions of agents or a sequence of decisions that unfolded within

the model.

15. Keep in mind that the process may be path dependent. Small differences in initial

conditions or seemingly trivial decisions at one point in the model may propagate

into substantive divergence in results later on. This one reason to study trajec-

tories: If the model departs from reality, one would like to know whether at what

point in time it departed and what accounted for this departure.

16. For example, two very different assumptions about mate preferences—that peo-

ple desire a mate with the highest mate value (e.g., as measured by attractiveness

or income) or that people desire a mate with a mate value most similar to their

own—will generate the same patterns of assortative mating.

17. Snijders, van de Bunt, and Steglich (2010) introduce a useful computational

model employing a Markov process; however, decisions are by definition ‘‘mem-

oryless’’ and there is limited opportunity to include environmental constraints

and heterogeneity among agents.

18. See http://www.openabm.org/models.

19. One promising tool for replicating scientific computing is the IPython notebook.

It embeds live code (written in Python, R, Java, and Cþþ [both via extensions]

and many other languages) alongside documentation such as written descrip-

tions, graphs, and other figures. The end result is a portable ‘‘notebook’’ docu-

ment that can be easily run on a local machine or a server. An introduction to

this continually improving project can be found at www.ipython.org.
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Nadja Rüger, Espen Strand, Sami Souissi, Richard Stillman, Rune Vabø, Uta Vis-

ser, and Donald DeAngelis. 2006. ‘‘A Standard Protocol for Describing

Individual-based and Agent-based Models.’’ Ecological Modelling 198:115-26.

216 Sociological Methods & Research 44(2)



Grimm, Volker, Eloy Revilla, Uta Berger, Florian Jeltsch, Wolf Mooij, Steven Rails-

back, Hans-Hermann Thulke, Jacob Weiner, Thorsten Wiegand, and Donald

DeAngelis. 2005. ‘‘Pattern-oriented Modeling of Agent-based Complex Systems:

Lessons from Ecology.’’ Science 310:987-91.
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