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The scales of human mobility

Laura Alessandretti1,2,3, Ulf Aslak1,2,3 & Sune Lehmann1,2 ✉

There is a contradiction at the heart of our current understanding of individual and 
collective mobility patterns. On the one hand, a highly influential body of literature on 
human mobility driven by analyses of massive empirical datasets finds that human 
movements show no evidence of characteristic spatial scales. There, human mobility 
is described as scale free1–3. On the other hand, geographically, the concept of scale—
referring to meaningful levels of description from individual buildings to 
neighbourhoods, cities, regions and countries—is central for the description of 
various aspects of human behaviour, such as socioeconomic interactions, or political 
and cultural dynamics4,5. Here we resolve this apparent paradox by showing that 
day-to-day human mobility does indeed contain meaningful scales, corresponding to 
spatial ‘containers’ that restrict mobility behaviour. The scale-free results arise from 
aggregating displacements across containers. We present a simple model—which 
given a person’s trajectory—infers their neighbourhood, city and so on, as well as the 
sizes of these geographical containers. We find that the containers—characterizing 
the trajectories of more than 700,000 individuals—do indeed have typical sizes. We 
show that our model is also able to generate highly realistic trajectories and provides a 
way to understand the differences in mobility behaviour across countries, gender 
groups and urban–rural areas.

It is nearly impossible to underestimate the importance of establishing 
a quantitative foundation for our understanding of how individuals 
move from place to place in their everyday lives. Hundreds of millions 
of individuals spend billions of collective hours commuting every day6. 
Goods and food are transported through a global network using shared 
infrastructure7. Understanding mobility patterns helps us mitigate 
epidemic spreading8, assist in crisis management9, prepare for dramatic 
shifts in modes of transportation10 and in many other cases6. For this 
reason, understanding the origin of scale-free distributions of displace-
ments in empirical mobility traces is crucial, as this issue currently 
separates the large-scale data-driven human mobility research11 from 
the community of human geography4,5 and transportation research12.

Our mental representation of physical space has a hierarchical struc-
ture13. We describe space by referring to places4, meaningful spatial enti-
ties with associated typical size, or scale, from rooms and buildings—via 
neighbourhoods, cities and states—to nations and continents that are 
organized in a nested structure4,14–17. Geographical borders confine 
residential mobility18 and collective mobility fluxes19. Commuting is 
characterized by a typical travel-time budget, and, as a consequence, 
there exist characteristic spatial scales that have evolved in connection 
with the progress of transportation20. Further, it has been conjectured 
that there are fundamental differences between forms of moving at 
different scales, from moving within a building to travelling across 
the globe6,12,16.

However, recent empirical research in the field of human mobility11 
has found no evidence for characteristic spatial scales in how people 
travel1–3,21. On the contrary, studies have shown that the distribution of 
displacement lengths Δr travelled by an individual has a power-law tail 
P(Δr) ≈ Δr−β over several orders of magnitude, where typically 1 ≤ β ≤ 2 

(ref. 22). Power-law distributions are also called scale free, because they 
are the only mathematical distribution to have no associated typical 
scale23 (Supplementary Note 1).

Nested scales generate power laws
So the question becomes: How is it possible that our intuitive concep-
tion of space is clearly hierarchical and characterized by typical scales, 
when a broad range of empirical datasets, ranging from displacements 
of dollar bills1 or cell-tower data2 to public transportation systems24, 
and GPS data25,26 all suggest that human mobility is scale free?

To explain this apparent contradiction, we propose that each typical 
scale of human mobility corresponds to a container of a certain mobil-
ity behaviour. These containers (rooms, buildings, neighbourhoods, 
cities, countries and so on) have typical sizes (Fig. 1a), and roughly 
correspond to the notion of places in geography4. The observed power 
law arises when we aggregate mobility behaviour within containers and 
mobility that transports a person between containers. Specifically, it is 
well known that mixtures of normal (or lognormal) distributions with 
different variances can generate power laws27 (Fig. 1d). More specifi-
cally, we assume that for each individual, physical space is organized 
as a nested structure of containers. This structure relates, in part, to 
the organization of the transportation system20 and to the concrete 
structure of our built environment16 (Fig. 1a).

We propose that these nested containers affect how individu-
als move, and therefore can be inferred from the raw mobility data. 
Specifically, the amount of time spent within a container can depend 
on its hierarchical level. The connection between hierarchical level 
and mobility is supported by the literature, which shows that, for 
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example, transitions between regions are more frequent than transi-
tions between countries28.

A simple model identifies containers
We now describe the associated container model of mobility, a model 
that estimates a person’s containers from their empirical mobility 
patterns (Fig. 1c). For each individual, we model physical space as a 
hierarchy of L levels, ordered from the smallest to largest (for example, 
individual locations to countries). At any level l, space is partitioned 
into topologically compact containers, with a characteristic size. For 
l < L, a container is fully included within a single parent container (for 
example, each neighbourhood is part of a single city). Hence, each 
geographical location k can be identified as a sequence of containers, 
k = (k1, ..., kl, ..., kL), where container kl is included in kl + 1.

Next, consistent with most models of human mobility11,29, each 
container kl is characterized by its probability to be selected within 
its parent container, its attractiveness a(kl). We define the level 
distance d(j, k) between locations j and k as the highest index at 
which the two sequences of containers describing j and k differ30. 
We model traces individually; each trace results in a unique hierar-
chical structure.

Based on the assumption that the amount of time spent in a container 
depends on its place in the hierarchy, we design a model of trajectories, 
where the probability of transitioning from location j to location k 

depends on the level distance between them. For an agent located in j, 
we model the probability of moving to k as the product of two factors:

∏P j k p a k( → ) = ( ), (1)d j k d j h
l d j k

l( , ), ( , )
≤ ( , )

(see also ‘Model description’ in Methods). The first factor, pd(j,k),d(j,h), 
represents the probability of travelling at level distance d(j, k), given 
that the current location j is at level distance d(j, h) from the individual 
home location, h. This probability follows a multinomial distribution, 
which must depend on level distance from home to account for the 
fact that higher-level transitions are more likely when individuals are 
not in the home container; for example, one is typically more likely to 
transition at the country scale, when not in the home country. The 
second factor a k∏ ( )l d j k l≤ ( , )  is the probability of choosing a specific 
location k at that level distance, where a(kl) is the attractiveness of a 
container at level l including location k.

Scales of human mobility
We fit this container model to the individual GPS traces from two dif-
ferent datasets: dataset D1, which consists of traces of approximately 
700,000 individuals distributed across the globe, and dataset D2, 
which consists of traces of approximately 1,000 students from the 
Technical University of Denmark (see ‘Data description’ in Methods). 
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Fig. 1 | The scales of human mobility. a, Example of containers for an 
individual living in Copenhagen, characterized by the size of containers in 
neighbourhoods (blue), cities (orange), urban agglomerations (green) and 
regions (red). Map data copyrighted OpenStreetMap contributors and 
available from https://www.openstreetmap.org. b, Distribution of container 
sizes (left) and median time spent in the same container (right) across 
individuals. Dashed lines correspond to medians. Results, shown here for 
containers at different hierarchical levels, are obtained by fitting the container 
model to the D1 dataset, consisting of approximately 700,000 anonymized 

GPS traces of individuals distributed across the globe (see Extended Data Fig. 2 
for dataset D2). c, Schematic representation of the container model. 
Individuals move between locations (black dots) inside a nested set of 
containers. The probability of transitioning between two locations j and k is the 
product of two factors, corresponding to choosing level distance and 
destination (see main text). d, Gaussian distributions with different variances 
(left) and their mixture (right) on a log–log scale. The dashed line (right) is a 
power law P(x) ≈ x−β with variable of interest x and exponent β = 1 to guide the 
eye.

https://www.openstreetmap.org
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We fit the model using maximum likelihood estimation (see ‘Likeli-
hood optimization’ in Methods). For each individual, the fitting pro-
cedure outputs the most likely hierarchical spatial structure, along 
with attractiveness of containers and probabilities of travelling at a 
given level distance. We find that empirical individual mobility traces 
are characterized, on average, by four hierarchical levels. In contrast, 
synthetic traces generated by the current state-of-the-art models, 
for example, the exploration and preferential return (EPR) model3 
and its variations31, are best described by a single hierarchical level 
grouping individual stop locations (Extended Data Fig. 5). In both 
datasets of GPS traces, our model finds characteristic sizes of con-
tainers. The sizes of containers—defined as the maximum distance 
between two locations in a container at a given level—are not broad, 
but well described by a lognormal distribution across the popula-
tion. Our results are robust across datasets (Extended Data Table 1). 
We argue that the characteristic sizes of containers are precisely the 
‘scales’ of human mobility.

These typical sizes of containers can be characterized by the median 
value e μl , of the lognormal distributions with log-mean μl and 
log-standard deviation σl (ref. 32), for each hierarchical level l. We find 
e μ2 = 3.089 ± 0.006 km, e μ3 = 27.064 ± 0.006 km, e μ 4 = 88.442 ± 0.022 km 
and e μ5 = 161.634 ± 0.049 km (Fig. 1b, Extended Data Table 3). The coef-

ficient of variation C e= − 1l
σ l

2
 (ref. 33), characterizing the relative dis-

persion of the lognormal distribution, is included in the range [2.721, 
3.042] for l in the range [2, 5].

The median time spent within the same container at a given level 
is also well described by a lognormal distribution (Fig. 1c, Extended 
Data Table 2), implying that there are characteristic temporal scales 
associated with spatial scales.

Having shown that we can infer information on geographical scales 
directly from the raw data, we now demonstrate the usefulness of this 
novel description of mobility patterns. We approach this task in two 

steps. First, we argue that the hierarchical description generated by 
the container model generalizes to unseen data without overfitting, 
while providing a more expressive and nuanced description of mobility 
relative to state-of-the-art models according to unbiased performance 
estimates. Second, drawing on demographic and environmental data, 
we show that the container model produces results that converge with 
existing literature on gender differences, urban/rural divides and walk-
ability scores.

Validating through generation of traces
First, we explore the ability of the container model to capture key fea-
tures of empirical mobility patterns and compare it with state-of-the-art 
models. The container model allows us to generate synthetic traces. 
The realistic nature of these trajectories can be verified by comparing 
the statistical properties of synthetic and real sequences of locations 
(Fig. 2). For each individual, we fit the container model parameters 
using a portion of the entire trace with length one year (see ‘Likeli-
hood optimization’ in Methods), and we then generate 1,000 synthetic 
sequences of 50 displacements (see ‘Generation of traces’ in Methods). 
Now, we can compare these synthetic traces with actual traces of the 
same length, collected in the one-year window subsequent to training. 
Thus, there is no overlap between the data we used to fit the model and 
the data we used to validate the model. Comparing synthetic traces to 
unseen data provides an unbiased performance estimate, which allows 
us to compare model performance across multiple models and confirm 
that the container model does not overfit (Supplementary Note 4).

We focus on four key properties of mobility in the generated data: 
distribution of displacements, evolution of radius of gyration, time 
allocation among locations and entropy.

Considering the distribution of displacement lengths between 
consecutive locations, a widely studied property of mobility traces22, 
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Fig. 2 | The container model generates realistic mobility traces. a, The 
distribution of displacements for the entire population, computed for real 
traces (black line, dots), and traces generated by the container (orange filled 
area) and the EPR3 (blue filled area) models. b, The median individual radius of 
gyration versus the number of displacements for data (black line, dots), and 
traces generated by the container (orange filled area) and the EPR (blue filled 
area) models. c, The average visitation frequency versus the rank of individuals’ 
locations for real traces (black line, dots), and container (orange filled area) and 
the EPR (blue filled area) model traces. d, The distribution of the difference 

between the temporal entropy Stemp and the uncorrelated entropy Sunc across 
individuals for real traces (black line, dots), and synthetic traces generated by 
the container (orange filled area) and the EPR (blue filled area) models. In a, c 
and d, the filled areas for synthetic traces include two standard deviations 
around the mean computed across 1,000 simulations for each user. In b, filled 
areas include the interquartile range. For each individual, we fitted the EPR and 
container models considering a training period of one year. The data used here 
for validation corresponds to the 50 individual displacements following the 
training period. Results are shown for a random sample of 9,000 individuals.
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the likelihood ratio test34 shows that the container model provides a 
significantly better description of the data than the EPR model3 and 
its variations (Fig. 2a, Extended Data Fig. 4, Extended Data Table 4; 
with P ≪ 0.01).

Next, the radius of gyration2 (see ‘Metrics’ in Methods) quantifies 
the spatial extent of an individual’s mobility. Here we find that while 
the evolution of individuals’ radius of gyration rg(t) over time t is well 
described by a logarithmic growth in all cases—real2, EPR3 and the con-
tainer model (Fig. 2b)—only the fit rg(t) = a + b log(t) with parameters 
a and b for the container model traces is consistent with the real data 
within errors (Supplementary Note 4).

We characterize the way in which individuals allocate time among 
locations (Fig. 2c), and find that the distribution of location frequen-
cies is better described by the container model, compared with the EPR 
model, under the likelihood ratio test34 (with P ≪ 0.01).

The final property of synthetic traces is the individual difference 
between the uncorrelated entropy Sunc, which characterizes the hetero-
geneity of visitation patterns, and the temporal entropy, Stemp, which 
depends not only on the frequency of visitation but also on the order in 
which locations were visited35 (see ‘Metrics’ in Methods). The likelihood 
ratio test34 shows that the distribution of Sunc − Stemp is better described 

by the container model, compared with the EPR model (with P ≪ 0.01). 
The result that the container model provides a better description of 
mobility compared with the state-of-the-art models holds also when 
considering a comprehensive11 set of six state-of-the-art individual-level 
models (Supplementary Note 4).

Validating through demographics and built 
environment
Now, we aggregate users based on demographics and contextual fea-
tures and explore the characteristics of containers for each subgroup 
of users, to underscore how the container model reveals patterns that 
have strong support in the existing literature. We focus on three factors 
that describe heterogeneity in mobility behaviour: gender36, level of 
urbanization37 and walkability score38 in the area surrounding one’s 
home location. First, we find that gender differences can partly explain 
the observed heterogeneity, in line with previous findings36, although 
not in all of the countries under study (Fig. 3a, Supplementary Table 1). 
A novel finding concerns the fact that in 21 out of 53 countries, females 
are characterized by a significantly larger number of hierarchical levels 
than males (P ≤ 0.05), while the opposite is not the case for any country 
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Fig. 3 | Socio-demographic differences and heterogeneity in scales. a, The 
cumulative distribution function (CDF) of number of levels for males (M, blue 
dashed line, inset) and females (F, red dashed line, inset), and the difference 
between the two (M − F, black dashed line). Results are shown for the four 
countries with the largest (left, Saudi Arabia and India) and the smallest (right, 
Germany and South Africa) gender gap, measured as the Kullback–Leibler (KL) 
divergence. b, The gender gap in number of levels, computed as the KL 
divergence between the number of levels for males and females, versus the 
GII39. Each dot represents a different country and the orange dots are the 

countries shown in a. The black dashed line is a power law fit P(x) ≈ xβ with 
β = 0.55. c, The cumulative distribution of container sizes for individuals living 
in urban (orange dashed line, inset) and rural (green dashed line, inset) areas, 
and the difference between the two (black dashed line). Results are shown for 
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(Supplementary Table 2). As a key observation inviting further research, 
we find that the difference between genders across countries, measured 
as the Kullback–Leibler divergence between the distributions of num-
ber of levels, is strongly correlated with the Gender Inequality Index 
(GII)39. The GII measures the percentage of potential human develop-
ment loss due to gender inequality (Spearman correlation ρ = 0.69, 
P < 10−6; Fig. 3b). Turning next to the size of containers, we find that in 
48 out of 53 countries, the containers characterizing the mobility of 
females are smaller compared with males (Supplementary Note 2, P ≤ 
0.05), in line with previous research36.

Second, we find that the urban/rural divide partly explains differ-
ences in mobility patterns, in line with the fact that rural areas are 
characterized by limited accessibility16,40. Individuals living in rural 
areas (see ‘Other data’ in Methods for definitions) have significantly 
larger containers compared with urban individuals (P ≤ 0.05), and this 
difference is more pronounced at the lowest hierarchical levels (Fig. 3c, 
Supplementary Table 3).

Finally, we find that the walkability score around an individual’s home 
location correlates negatively with the size of containers at the lowest 
hierarchical level (Spearman correlation ρ = −0.96, P < 10−9; Fig. 3d), in 
line with the finding that improved walkability increases accessibility 
to goods, services and activities41. The correlation between walkability 
and container size is significant up to the third level of description 
(Supplementary Note 2, P<<0.01).

Discussion
The paradigm of power-law descriptions does not stand entirely 
unchallenged within the quantitative analysis literature. For example, 
it has been argued that exponential or lognormal functions may be 
more suitable to describe the distributions of displacements within 
cities22, hinting that human mobility may not be completely free of 
scales. Until now, however, the nature of the probability distribution 
of displacements has been unclear22,26. For example, it has been sug-
gested that scaling laws could be the signature of Lévy flights—a type 
of random walk with scale-free step-size attributed to animal forag-
ing42—but Lévy flights do not reproduce all statistical properties of 
human trajectories3. It has also been proposed that the structure of 
the transportation system26,43,44, where each mode of transportation 
corresponds to a typical distance travelled, could explain the observed 
scaling laws. Intracity displacements considering all transportation 
modes, however, are not scale-free distributed, as this theory would 
suggest21,24. Owing to the lack of agreement on the functional form 
of distribution of displacements, many state-of-the-art agent-based 
models of individual mobility focus on temporal aspects11, including 
the interplay between exploration and exploitation3,45, recency and 
memory effects25,31,46, and weekly and circadian rhythms47. With few 
exceptions43, these models do not account for effects due to the spatial 
distribution of locations.

Here we have proposed a model in which human mobility is organized 
according to a hierarchical structure of spatial containers, correspond-
ing to the notion of places in geography (see equation (1)). Under this 
model, the observed power-law data arise by merging mobility within 
containers with mobility that transports a person between contain-
ers. The container model focuses on a specific aspect of mobility, and 
neglects other important features, including temporal visitation pat-
terns, exploration3 and the structural connectedness of geographical 
spaces (for example, through transportation networks)48–50. These 
could be incorporated in future versions of the model. Fitting the model 
to trajectories collected in two distinct datasets, consisting of approxi-
mately 700,000 GPS traces of individuals distributed across the world, 
we found that—across individuals—the containers have typical sizes, 
representing the ‘scales’ of human mobility. We showed that our model 
allows for better understanding of mobility behaviour and improves 
on the state of the art in modelling.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2909-1.

1. Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 
462–465 (2006).

2. González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding individual human mobility 
patterns. Nature 453, 779–782 (2008).

3. Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human 
mobility. Nat. Phys. 6, 818–823 (2010).

4. Paasi, A. Place and region: looking through the prism of scale. Prog. Hum. Geogr. 28, 
536–546 (2004).

5. Marston, S. A. The social construction of scale. Prog. Hum. Geogr. 24, 219–242 (2000).
6. Cresswell, T. On the Move: Mobility in the Modern Western World (Taylor & Francis, 2006).
7. Kaluza, P., Kölzsch, A., Gastner, M. T. & Blasius, B. The complex network of global cargo 

ship movements. J. R. Soc. Interface 7, 1093–1103 (2010).
8. Kraemer, M. U. et al. The effect of human mobility and control measures on the COVID-19 

epidemic in China. Science 368, 493–497 (2020).
9. Song, X., Zhang, Q., Sekimoto, Y. & Shibasaki, R. Prediction of human emergency 

behavior and their mobility following large-scale disaster. In Proc. 20th ACM SIGKDD Int. 
Conf. on Knowledge Discovery and Data Mining 5–14 (ACM, 2014).

10. Becker, F. & Axhausen, K. W. Literature review on surveys investigating the acceptance of 
automated vehicles. Transportation 44, 1293–1306 (2017).

11. Barbosa, H. et al. Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018).
12. Larsen, J. & Urry, J. Mobilities, Networks, Geographies (Routledge, 2016).
13. Hirtle, S. C. & Jonides, J. Evidence of hierarchies in cognitive maps. Mem. Cognit. 13,  

208–217 (1985).
14. Von Thünen, J. H. Der isolierte Staat in Beziehung auf Landwirtschaft und 

Nationalökonomie Vol. 13 (G Fischer, 1910).
15. Christaller, W. Die zentralen Orte in Süddeutschland: eine ökonomisch-geographische 

Untersuchung über die Gesetzmässigkeit der Verbreitung und Entwicklung der 
Siedlungen mit städtischen Funktionen (Wissenschaftliche Buchgesellschaft, 1980).

16. Berry, B. J. L. Geography of Market Centers and Retail Distribution (Prentice Hall,  
1967).

17. Alonso, W. et al. Location and Land Use. Toward a General Theory of Land Rent (Harvard 
Univ. Press, 1964).

18. Cadwallader, M. Migration and Residential Mobility: Macro and Micro Approaches (Univ. 
Wisconsin Press, 1992).

19. Thiemann, C., Theis, F., Grady, D., Brune, R. & Brockmann, D. The structure of borders in a 
small world. PLoS ONE 5, e15422 (2010).

20. Marchetti, C. Anthropological invariants in travel behavior. Technol. Forecast. Soc. 
Change 47, 75–88 (1994).

21. Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A tale of many cities: 
universal patterns in human urban mobility. PLoS ONE 7, e37027 (2012); correction 7, 
https://doi.org/10.1371/annotation/ca85bf7a-7922-47d5-8bfb-bcdf25af8c72 (2020).

22. Alessandretti, L., Sapiezynski, P., Lehmann, S. & Baronchelli, A. Multi-scale spatio- 
temporal analysis of human mobility. PLoS ONE 12, e0171686 (2017).

23. Newman, M. E. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46,  
323–351 (2005).

24. Liang, X., Zhao, J., Dong, L. & Xu, K. Unraveling the origin of exponential law in intra-urban 
human mobility. Sci. Rep. 3, 2983 (2013).

25. Alessandretti, L., Sapiezynski, P., Sekara, V., Lehmann, S. & Baronchelli, A. Evidence for a 
conserved quantity in human mobility. Nat. Hum. Behav. 2, 485–491 (2018).

26. Gallotti, R., Bazzani, A., Rambaldi, S. & Barthelemy, M. A stochastic model of randomly 
accelerated walkers for human mobility. Nat. Commun. 7, 12600 (2016).

27. Gheorghiu, S. & Coppens, M.-O. Heterogeneity explains features of “anomalous” 
thermodynamics and statistics. Proc. Natl Acad. Sci. USA 101, 15852–15856  
(2004).

28. Amini, A., Kung, K., Kang, C., Sobolevsky, S. & Ratti, C. The impact of social segregation 
on human mobility in developing and industrialized regions. EPJ Data Sci. 3, 6 (2014).

29. Fotheringham, A. S. A new set of spatial-interaction models: the theory of competing 
destinations. Environ. Plan. A 15, 15–36 (1983).

30. Saraçli, S., Doğan, N. & Doğan, İ. Comparison of hierarchical cluster analysis methods by 
cophenetic correlation. J. Inequal. Appl. 2013, 203 (2013).

31. Barbosa, H., de Lima-Neto, F. B., Evsukoff, A. & Menezes, R. The effect of recency to 
human mobility. EPJ Data Sci. 4, 21 (2015).

32. Gaddum, J. H. Lognormal distributions. Nature 156, 463–466 (1945).
33. Romeo, M., Da Costa, V. & Bardou, F. Broad distribution effects in sums of lognormal 

random variables. Eur. Phys. J. B 32, 513–525 (2003).
34. Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM 

Rev. 51, 661–703 (2009).
35. Song, C., Qu, Z., Blumm, N. & Barabási, A.-L. Limits of predictability in human mobility. 

Science 327, 1018–1021 (2010).
36. Gauvin, L. et al. Gender gaps in urban mobility. Humanit. Soc. Sci. Commun. 7, 11 (2020).
37. Breheny, M. The compact city and transport energy consumption. Trans. Inst. Br. Geogr. 

20, 81–101 (1995).
38. Carr, L. J., Dunsiger, S. I. & Marcus, B. H. Walk Score™ as a global estimate of 

neighborhood walkability. Am. J. Prev. Med. 39, 460–463 (2010).
39. Gaye, A. et al. Measuring Key Disparities in Human Development: The Gender Inequality 

Index Human Development Research Paper 46 (UNDP, 2010).

https://doi.org/10.1038/s41586-020-2909-1
https://doi.org/10.1371/annotation/ca85bf7a-7922-47d5-8bfb-bcdf25af8c72


Nature | Vol 587 | 19 November 2020 | 407

40. Velaga, N. R., Beecroft, M., Nelson, J. D., Corsar, D. & Edwards, P. Transport poverty meets 
the digital divide: accessibility and connectivity in rural communities. J. Transp. Geogr. 
21, 102–112 (2012).

41. Litman, T. A. Economic value of walkability. Transp. Res. Rec. 1828, 3–11 (2003).
42. Baronchelli, A. & Radicchi, F. Lévy flights in human behavior and cognition. Chaos 

Solitons Fractals 56, 101–105 (2013).
43. Han, X.-P., Hao, Q., Wang, B.-H. & Zhou, T. Origin of the scaling law in human mobility: 

hierarchy of traffic systems. Phys. Rev. E 83, 036117 (2011).
44. Zhao, K., Musolesi, M., Hui, P., Rao, W. & Tarkoma, S. Explaining the power-law distribution 

of human mobility through transportation modality decomposition. Sci. Rep. 5, 9136 
(2015).

45. Pappalardo, L. et al. Returners and explorers dichotomy in human mobility. Nat. Commun. 
6, 8166 (2015).

46. Szell, M., Sinatra, R., Petri, G., Thurner, S. & Latora, V. Understanding mobility in a social 
petri dish. Sci. Rep. 2, 457 (2012).

47. Jiang, S. et al. The TimeGeo modeling framework for urban mobility without travel 
surveys. Proc. Natl Acad. Sci. USA 113, E5370–E5378 (2016); correction 113, E7137  
(2016).

48. Pumain, D. in Hierarchy in Natural and Social Sciences (ed. Pumain, D.) 169–222 (Springer, 
2006).

49. Batty, M. in Hierarchy in Natural and Social Sciences (ed. Pumain, D.) 143–168 (Springer, 
2006).

50. Arcaute, E. et al. Cities and regions in Britain through hierarchical percolation. R. Soc. 
Open Sci. 3, 150691 (2016).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020



Article
Methods

Data description and pre-processing
Mobility data. Our analyses are based on two mobile-phone datasets 
collecting high-resolution human trajectories. The study procedure 
follows the guidelines provided by the Danish Data Protection Agency.

The D1 dataset contains anonymized GPS location data for approxi-
mately 5,000,000 individuals collected by a global smartphone and 
electronics company between 2017 and 2019 (Extended Data Fig. 1). 
The data consist of anonymized users who self-reported their age, 
gender, height, weight and country of residence. Data were extracted 
through a smartphone app. All data analysis was carried out in accord-
ance with the European Union’s General Data Protection Regulation 
2016/679 (GDPR) and the regulations set out by the Danish Data 
Protection Agency. We selected approximately 700,000 individu-
als with at least one year of data and whose position is known, every 
day, at least 50% of the time. Individuals are located across the world 
and are aged between 18 and 80 years old, with an average age of 36 
years. About one-third of individuals are female. Gender and age 
were provided by the users at the time of registration. Data are not 
collected at a fixed sampling rate. Instead, the location estimate is 
updated when there is a change in the motion state of the device (if 
the accelerometer registers a change). Location estimation error is 
below 100 m for 93% of data points. Informed consent was obtained 
for all study participants.

The D2 data were collected as part of an experiment that took place 
between September 2013 and September 201551. The experiment 
involved 851 Technical University of Denmark students (about 22% 
female and about 78% male), typically aged between 19 and 21 years 
old. Participants’ position over time was estimated from a combina-
tion of GPS and WiFi information, resulting in samples every 1–2 min. 
The location estimation error was below 50 m in 95% of the cases. Data 
collection was approved by the Danish Data Protection Agency. All 
participants provided informed consent.

The data to produce Fig. 1a are the location trajectory of one of the 
authors. We pre-processed all trajectories to obtain stop locations 
using the Infostop algorithm52. We used the following algorithm 
parameters: r1 = 30 m, r2 = 30 m, min_staying_time = 10 min, max_time_
between = 24 h. Results are robust with respect to variation of these 
parameters (Supplementary Note 1).

Other data. We collected data on the walkability score in the area sur-
rounding individuals’ home locations using the WalkScore38 application 
programming interface (https://www.walkscore.com/professional/
walk-score-apis.php). We collected data for 11,511 individuals living 
in New Zealand, Australia, Canada and the United States, for which 
WalkScore data were available.

Data on the urbanization level in the area surrounding individuals’ 
home locations is based on the GHS Settlement Model grid53 that deline-
ates and classifies settlement typologies via a logic of population size, 
population and built-up area densities. This classification categorizes 
areas in urban areas, towns and rural areas. In our analysis, we merged 
towns and cities into a single category. Data can be downloaded from: 
https://ghsl.jrc.ec.europa.eu/data.php.

The GII dataset can be downloaded from: http://hdr.undp.org/en/
content/gender-inequality-index-gii. We used data for 2017.

The container model
Model description. The container model models the trace of an agent 
transitioning between locations in space. The model is specified by 
three sets of parameters that can be either simulated to generate syn-
thetic traces or estimated for an empirical trace through maximum 
likelihood estimation. The model contains the following.

(1) A hierarchical structure H with L levels, where each level consists 
of containers encapsulating locations. Accordingly, each location k 

can be described as a sequence of containers encapsulated within each 
other, k = (k1, ..., kl, ..., kL), where levels are ordered from the most fine 
grained l = 1 to the most coarse grained l = L. In analogy, a restaurant 
can be described as a sequence corresponding to the building, the 
neighbourhood, the city and so on where it is located. At each level in 
the hierarchy, containers have comparable size. In the simplest form, 
this structure is a nested grid (Supplementary Note 3).

(2) The collection of these containers’ attractivenesses, a. The attrac-
tiveness a(kl) is the probability of visiting container kl among all con-
tainers encapsulated within kl + 1. Accordingly, a k∑ ( ) = 1k k l∈l l+1

.
(3) The L × L matrix, p, characterizing the probability of travelling 

at a certain level distance. Each row in p is a probability vector that 
describes the probabilities p(d, dh) of travelling at level distance d 
when the level distance from home is dh. Here, home is defined as 
the location with largest attractiveness at all levels. By level distance 
we mean the so-called cophenetic distance30: the highest level in 
the hierarchy one travels to reach the destination. It is necessary to 
maintain separate probability distributions for each level distance 
from home. This is, for example, because travelling at the highest 
level distance (for example, intercontinentally) is unlikely when one 
is near home, but comparatively likely when on a different continent.

Under the container model, each transition is the result of a two-stage 
decision process. First, the individual selects at which level distance 
to travel. Then, she selects a specific destination based on container 
attractiveness. Specifically, an individual located in j, chooses destina-
tion location k with probability:

∏P j k p
a k

a j
a k( → ) =

( )

1 − ( )
( )H a p d j k d j h

d j k

d j k l

d j k

l, , ( , ), ( , )
( , )

( , ) =1

( , )−1

The first factor, pd(j, k),d(j, h), is the probability of travelling at level distance 

d(j, k). The second factor a k

a j

( )

1 − ( )
d j k

d j k

( , )

( , )
 is the probability of choosing con-

tainer kd(j, k). Such a container is found at level d(j, k) in the hierarchy 
and has attractiveness a(kd(j, k)). The renormalization 1 − a(jd(j, k)) accounts 
for the fact that container jd(j, k) cannot be selected (this detail is not 
present in the main text for readability). The third factor a k∏ ( )l

d j k
l=1

( , )−1  
is the probability of picking all other containers kl that encapsulate 
location k, for any level in the hierarchy lower than d(j, k). Note that the 
way we model destination choice in a hierarchical fashion connects to 
the class of choice models called nested logit models54. The nested 
structure of the physical space in the container model relates, in part, 
to the organization of the transportation system20,55,56 and to the con-
crete structure of our built environment16,49. The importance of these 
contexts are also gradually being recognized in the human mobility 
literature, where early studies focused on large datasets, but did not 
consider the effect of contextual information, for example, transpor-
tation type or other mobility characteristics, which can introduce 
heterogeneity21,36,44,57–62.

Generating traces. We model transitions as a two-step decision pro-
cess. Thus, we can simulate synthetic trajectories given a hierarchical 
description H, container attractivenesses a and the probability matrix 
p, (either designed or obtained by fitting the container model to an 
empirical trace). We simulate the mobility of an agent by the following 
algorithm. To guide the reader we offer an example at each step, describ-
ing an agent travelling across a hierarchy where levels correspond to 
countries, cities, neighbourhoods, buildings and locations.

(1) Initialize the agent in a random location, j, at level distance d(j, h) 
from the home location. Example: the agent is initialized in location j 
located in a different country than her home country.

(2) Select a level distance l* that the agent should travel at, by drawing 
from the multinomial distribution, pd(j, h). Example: the agent chooses 
to travel at the city distance.

(3) Select a destination, k:

https://www.walkscore.com/professional/walk-score-apis.php
https://www.walkscore.com/professional/walk-score-apis.php
https://ghsl.jrc.ec.europa.eu/data.php
http://hdr.undp.org/en/content/gender-inequality-index-gii
http://hdr.undp.org/en/content/gender-inequality-index-gii


(a) At level l*, select a container kl ⁎, by drawing from the attractive-
ness distribution over the containers encapsulated in jl +1⁎ jl ⁎ cannot be 
selected in this process, so k j≠l l

⁎ ⁎ . Example: the agent chooses the 
destination city among other cities in the same country where she is 
currently located.

(b) At level (l* −1), select a container kl −1⁎  encapsulated within kl ⁎, by 
drawing from the attractiveness distribution over containers in kl ⁎. 
Continue this process until level 1 is reached. Example: the agent picks 
a neighbourhood, then a building and then a location encapsulated 
within the destination city chosen in the previous step.

(4) Repeat steps (2) and (3) for any desired number of displacements.

Likelihood optimization. We can fit the container model to an empirical 
trace and obtain the model parameters H, a and p, using maximum likeli-
hood estimation. We write the likelihood that a sequence of individual 
locations T = [k(0), ..., k(i), ...k(nT)], where i is the sequence index and 
nT is the length of the sequence, was generated by an instance of the 
container model specified by H, a and p, as:

L ∏H a p T P k i k i( , , | ) = ( ( − 1) → ( )),
i

n

H a p
=0

−1

, ,

T

where PH,a,p(k(i − 1) → k(i)) is the probability of a transition to occur.
Unlike spatial clustering methodologies, this method allows us to 

identify ‘containers’, structures that are not only compact in size but 
also contain mobility behaviour. This optimization task, however, 
is computationally expensive; therefore, we approach the problem 
according to the following heuristic.

First, we note that, when nT is large and H is chosen, p and a are triv-
ial to estimate. In fact, for nT → ∞, element pd d, h

 of matrix p equals the 
fraction of transitions covering a level distance d among all transitions 
starting at level distance dh from home. Similarly, for nT → ∞, the attrac-
tiveness of a container equals the fraction of times such container is 
selected among containers in the same parent container.

Thus, for long enough traces, we can estimate the maximum likeli-
hood by exploring different choices of H only, where H is effectively 
a spatial hierarchical partition of individual locations. To ensure that 
clusters are compact, we choose H among the solutions of the complete 
linkage hierarchical clustering algorithm63.

First, we run the complete-linkage algorithm for the set of locations 
in sequence T. The algorithm initializes each location as a separate 
cluster. It then iteratively joins the two clusters whose union has the 
smallest diameter, defined as the maximum distance between two 
locations in a cluster, and stores the clustering solution. It runs for N 
iterations, where N is the number of locations (and possible clustering 
solutions). In the final iteration, all locations form one cluster. The result 
of the complete-linkage algorithm can be visualized as a dendogram 
and queried for clusters at any cut distance (Extended Data Fig. 3a).

We then proceed to find the hierarchical partition H* corresponding 
to the maximum likelihood ℒ*. Exhaustive search would require com-
puting the likelihood for all possible partitions H. When we let L range 
from 1 to N, we arrive at the total number of possible partitions by the 
following logic: for L = 1, the dendogram is cut zero times so there is 
one partition, which has only individual locations and no containers; 
for L = 2 the dendogram is cut once, so there are N partitions because 
there are N ways to cut the dendogram; for L = 3, there are N N( − 1)

2
 ways 

to cut the dendogram two times, and so on. The set of all possible 

partitions then has size  






N
L

∑L
N

=1 . We define a heuristic to reduce the 

set of candidate partitions H, by optimizing the likelihood one level 
at a time (Extended Data Fig. 3b). The algorithm works as follows. First, 
we compute the likelihood ℒ1 of T in the case L = 1, corresponding to 
having no containers. Then, we test the N possible partitions corre-
sponding to cutting the dendogram one time (that is, L = 2), by 

computing the corresponding likelihoods. We find the cut C2 of the 
dendogram resulting in the maximum likelihood ℒ2. If ℒ1 is significantly 
larger than ℒ2 (tested by bootstrapping, with P ≤ 0.01), we assign ℒ* = ℒ1, 
conclude that H* has only one level (individual locations) and stop the 
algorithm. Otherwise, we explore the set of partitions corresponding 
to two cuts of the dendogram (that is, L = 3), where one of them is C2, 
and find the cut C3 that yields the maximum likelihood ℒ3. We compare 
ℒ2 and ℒ3, and stop the algorithm if ℒ2 is significantly larger than ℒ3 
(tested by bootstrapping, with P ≤ 0.01). We proceed for increasing 
values of L, until L = N or there is no significant improvement in likeli-
hood (tested by bootstrapping, with P ≤ 0.01). In the worst-case sce-
nario, we explore N! partitions. We validate the one-level-at-a-time 
algorithm against synthetic data (Extended Data Fig. 3, Supplementary 
Note 3). We find that the algorithm recovers the correct number of 
hierarchical levels about 95% of the time. The similarity between the 
correct and recovered hierarchical structure, measured as their cophe-
netic correlation30 has median value 1 (the cophenetic correlation is 
the correlation between the cophenetic distance computed for all 
pairs of locations according to two different hierarchical descriptions, 
and thus is 1 for identical descriptions). The median absolute error 
relative to the estimation of the matrix of probabilities p is 0.03.

Model validation
Metrics. In Fig. 2, we compare synthetic and real traces by computing 
quantities characterizing individual trajectories.

The radius of gyration for an individual u is defined as:

∑r
N

r r=
1

( − ) ,u

n

N

n
u

n
u

g
=0

CM,
2

where N is the total number of displacements (50 in our analysis), r n
u is 

the position of u after n displacements, r n
u
CM,  is its centre of mass after 

n displacements, defined as:

∑r
n

r=
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.n
u

j

n

j
u
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The uncorrelated entropy Sunc is defined as:

∑S P i P i= − ( )log ( ( )),
i

N

unc
=0

2

L

where P(i) is the probability of visiting location i, and NL is the total 
number of locations. The temporal entropy Stemp, is defined as

∑S P T P T= − ( )log ( ( )),
T T

i itemp
∈

′ 2 ′
i i′

where P T( )i ′  is the probability of finding a particular time-ordered sub-
sequence Ti ′ in the trajectory Ti. We estimate Stemp using the method 
described by Sekara et al.64

EPR model. We generate EPR synthetic traces as follows. First, we fit 
the model parameters9 and determine, for each individual, the number 
of visited locations S as well as the number of visits fi per location i 
using traces with one-year duration. Then, we generate traces using 
the model described in Song et al.9. At each new displacement, an in-
dividual explores a new place with probability ρS γ−  and exploits a 
previously known location with the complementary probability, where 
ρ and γ are parameters of the model. In the first case, she chooses a 
place at distance Δr, extracted from a power-law distribution 
P(Δr) ≈ Δr−β. In the latter case, she chooses a previously visited location 
i with probability proportional to the number of visits fi. See Supple-
mentary Note 4 for further details and the implementation of other 
models.
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Data availability
Derived data that support the findings of this study are available in 
DTU Data with the identifier https://doi.org/10.11583/DTU.12941993.
v1. Additional data related to this paper may be requested from the 
authors. Raw data for dataset D1 are not publicly available to preserve 
individuals’ privacy under the European General Data Protection Regu-
lation. Raw data for dataset D2 are not publicly available due to privacy 
considerations, but are available to researchers who meet the criteria 
for access to confidential data, sign a confidentiality agreement and 
agree to work under supervision in Copenhagen. Please direct your 
queries to the corresponding author. Source data are provided with 
this paper.

Code availability
Code is available at https://github.com/lalessan/scales_human_mobility/.
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Extended Data Fig. 1 | The D1 dataset. a, Number of individuals for each 
gender. b, Number of individuals per age group. c, Number of individuals per 
country (see colour scale). We considered the 600,817 individuals in our 
dataset with at least one year of data, and whose time coverage (the fraction of 

time an individual position is known) was higher than 50% at any given day. For 
these individuals, we considered one year of data with highest median time 
coverage. Map data from the GADM Database of Global Administrative Areas, 
version 3.6, available at http://www.gadm.org.

http://www.gadm.org
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Extended Data Fig. 2 | Distribution of container sizes at different levels.  
a–h, Distribution of individual container sizes at hierarchical levels 2 (a, e), 3 (b, 
f), 4 (c, g) and 5 (d, h) (black line) and the corresponding lognormal (blue line) 

and truncated power-law (orange line) fits. Results are shown for the D1 (a–d) 
and D2 (e–h) datasets.



Extended Data Fig. 3 | Schematic description and validation of the 
likelihood optimization algorithm. We find the hierarchical partitioning 
corresponding to a sequence of locations as follows. a, Individual locations are 
iteratively merged to form clusters via the complete linkage algorithm. Here 
the output of the algorithm is visualized as a dendogram. b, We add levels to the 
hierarchical partition by maximizing the likelihood of the container model one 
level at a time: at the first iteration (top), we find the container size (x axis) 
corresponding to the dendogram cut (dashed line) that minimizes the negative 
likelihood ( y axis), if any. We proceed by adding more dendogram cuts (middle 
and bottom), and thus hierarchical levels, until the likelihood can not be further 

improved. c, The dendogram cuts correspond to a hierarchical partitioning of 
individual locations. We evaluate the ability of the algorithm to recover the 
original parameters using 5,000 synthetic traces of 3,000 locations.  
d, Distribution of the difference between the number of recovered and original 
levels. The difference is 0 in 70% of the cases. e, Probability density associated 
with the cophenetic similarity between the original and recovered hierarchical 
structure. The dashed line corresponds to the median value. f, Probability 
density associated to the relative difference |popr|/pr between original (po) and 
recovered (pr) entries of the matrix p.
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Extended Data Fig. 4 | The container model generates realistic synthetic 
traces. a, e, The distribution of displacements for the entire population.  
b, f, The median individual radius of gyration versus the number of 
displacements. c, g, The average visitation frequency versus the rank of 
individuals’ locations. d, h, The distribution of the difference between the real 
entropy Stemp and the uncorrelated entropy Sunc across individuals. Results are 
shown for real traces (black line, dots), and traces generated by various models 

(see legend), for dataset D1 (a–d) and D2 (e–h). In a, c, d, e, g and h, the filled 
areas for the synthetic traces include two standard deviations around the mean 
computed across 1,000 simulations for each user. In b and f, the filled areas 
include the interquartile range. For each individual, we fitted the models 
considering a training period of one year. The data used here for validation 
corresponds to the 50 individual displacements following the training period.



Extended Data Fig. 5 | Number of hierarchical levels recovered from traces. 
Distribution of the number of hierarchical levels found by the container model 
for trajectories in the D1 dataset (plain black line), the D2 dataset (dashed black 
line), and 1,000 synthetic traces generated by the EPR model9 (blue line) and 
the memory EPR (m-EPR) model (green line).
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Extended Data Table 1 | The distribution of container sizes is not scale free

The log-likelihood ratio R (ref. 34) comparing the lognormal to other distributions (one per row) as a model for the distribution of container sizes. When R is positive, the lognormal distribution 
has higher likelihood compared with the alternative, and vice versa. The table reports also the P values associated with R (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). Results are shown at different hierar-
chical levels (rows), for dataset D2 and for dataset D1 under different choices of the parameter characterizing the typical size of individual locations52.



Extended Data Table 2 | The distribution of time spent within container is not scale free

The log-likelihood ratio R (ref. 34) comparing the lognormal to the truncated power-law distribution as a model for the distribution of time spent within a container before transitioning to a 
different one. When R is positive, the lognormal distribution has higher likelihood compared with the alternative, and vice versa. The table reports also the P values associated with R (*P ≤ 0.05, 
**P ≤ 0.01, ***P ≤ 0.001). Results are shown at different hierarchical levels (rows), for dataset D2 and for dataset D1 under different choices of the parameter characterizing the typical size of 
individual locations52.
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Extended Data Table 3 | Characteristics of the lognormal 
distributions of container sizes

The parameters μl and σl characterizing the lognormal distributions of container sizes at level 

l. We report also the median eμl, the mode and the coefficient of variation −e 1σl
2

 defined as 
the fraction between the standard deviation and the mean33.



Extended Data Table 4 | The container model describes 
unseen data better than other individual mobility models

The log-likelihood ratio R (ref. 34) comparing the likelihood of the container model to other 
models (one per row). When R is positive, the container model has higher likelihood com-
pared with the alternative, and vice versa. The table reports also the P values associated with 
R (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). Results are shown for the D1 and D2 datasets. We report 
the results obtained considering different properties of the trajectories: the probability of 
displacement length P(Δr), the probability of number of visits per location P(fl), and the prob-
ability of the difference between the uncorrelated and temporal entropy P(Sunc − Stemp).
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