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Perspective

Integrating explanation and prediction in 
computational social science

Jake M. Hofman1,17 ✉, Duncan J. Watts2,3,4,17 ✉, Susan Athey5, Filiz Garip6, Thomas L. Griffiths7,8, 
Jon Kleinberg9,10, Helen Margetts11,12, Sendhil Mullainathan13, Matthew J. Salganik6, 
Simine Vazire14, Alessandro Vespignani15 & Tal Yarkoni16

Computational social science is more than just large repositories of digital data and 
the computational methods needed to construct and analyse them. It also represents 
a convergence of different fields with different ways of thinking about and doing 
science. The goal of this Perspective is to provide some clarity around how these 
approaches differ from one another and to propose how they might be productively 
integrated. Towards this end we make two contributions. The first is a schema for 
thinking about research activities along two dimensions—the extent to which work is 
explanatory, focusing on identifying and estimating causal effects, and the degree of 
consideration given to testing predictions of outcomes—and how these two priorities 
can complement, rather than compete with, one another. Our second contribution is 
to advocate that computational social scientists devote more attention to combining 
prediction and explanation, which we call integrative modelling, and to outline some 
practical suggestions for realizing this goal.

In the past 15 years, social science has experienced the beginnings 
of a ‘computational revolution’ that is still unfolding1–4. In part this 
revolution has been driven by the technological revolution of the inter-
net, which has effectively digitized the social, economic, political, 
and cultural activities of billions of people, generating vast reposi-
tories of digital data as a byproduct5. And in part it has been driven 
by an influx of methods and practices from computer science that 
were needed to deal with new classes of data—such as search and 
social media data—that have tended to be noisier, more unstruc-
tured, and less ‘designed’ than traditional social science data (for 
example, surveys and lab experiments). One obvious and important 
outcome of these dual processes has been the emergence of a new 
field, now called computational social science2,4, that has generated 
considerable interest among social scientists and computer scientists  
alike6.

What we argue in this paper, however, is that another outcome—less 
obvious but potentially even more important—has been the surfacing 
of a tension between the epistemic values of social and computer sci-
entists. On the one hand, social scientists have traditionally prioritized 
the formulation of interpretatively satisfying explanations of individual 
and collective human behaviour, often invoking causal mechanisms 
derived from substantive theory7. On the other hand, computer scien-
tists have traditionally been more concerned with developing accurate 
predictive models, whether or not they correspond to causal mecha-
nisms or are even interpretable8.

In turn, these different values have led social and computer scientists 
to prefer different methods from one another, and to invoke different 
standards of evidence. For example, whereas quantitative methods 
in social science are designed to identify causal relationships or to 
obtain unbiased estimates of theoretically interesting parameters, 
machine learning methods are typically designed to minimize total 
error on as-yet unseen data9,10. As a result, it is standard practice for 
social scientists to fit their models entirely ‘in-sample’, on the grounds 
that they are seeking to explain social processes and not to predict 
outcomes, whereas for computer scientists evaluation on ‘held out’ 
data is considered obligatory11. Conversely, computer scientists often 
allow model complexity to increase as long as it continues to improve 
predictive performance, whereas for social scientists models should 
be grounded in, and therefore constrained by, substantive theory12.

We emphasize that both approaches are defensible on their own 
terms, and both have generated large, productive scientific litera-
tures; however, both approaches have also been subjected to serious 
criticism. On the one hand, theory-driven empirical social science 
has been criticized for generating findings that fail to replicate13, fail 
to generalize14, fail to predict outcomes of interest15,16, and fail to offer 
solutions to real-world problems17,18. On the other hand, complex pre-
dictive models have also been criticized for failing to generalize19 as 
well as being uninterpretable20 and biased21. Meanwhile, extravagant 
claims that the ability to mine sufficiently large datasets will result in 
an ‘end of theory’ have been widely panned22. How might we continue 
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to benefit from the decades of thinking and methodological develop-
ment that have been invested in these two canonical traditions while 
also acknowledging the legitimacy of these criticisms? Relatedly, how 
might social and computer scientists constructively reconcile their 
distinct epistemic values to produce new methods and standards of 
evidence that both can agree are desirable?

Our position is that each tradition, while continuing to advance its 
own goals, can benefit from taking seriously the goals of the other. Spe-
cifically, we make two related contributions. First, we argue that while 
the goals of prediction and explanation appear distinct in the abstract 
they can easily be conflated in practice, leading to confusion about what 
any particular method can accomplish. We introduce a conceptual 
framework for categorizing empirical methods in terms of their rela-
tive emphasis on prediction and explanation. In addition to clarifying 
the distinction between predictive and explanatory modelling, this 
framework reveals a currently rare class of methods that integrate the 
two. Second, we offer a series of suggestions that we hope will lead to 
more of what we call integrative modelling. In addition, we advocate for 
clearer labelling of the explanatory and predictive power of individual 
contributions and argue that open science practices should be stand-
ardized between the computational and social sciences. In summary, we 
conclude that while exclusively explanatory or predictive approaches 
can and do contribute to our understanding of a phenomenon, claims 
to have understood that phenomenon should be evaluated in terms of 
both. Considering the predictive power of explanatory models can help 
to prioritize the causal effects we investigate and quantify how much 
they actually explain, and may reveal limits to our understanding of 
phenomena. Conversely, an eye towards explanation can focus our 
attention on the prediction problems that matter most and encourage 
us to build more robust models that generalize better under interven-
tions and changes. Taking both explanation and prediction seriously 
will therefore be likely to require researchers to embrace epistemic 
modesty, but will advance work at the intersection of the computational 
and social sciences.

Prediction versus explanation
To illustrate how the goals of prediction and explanation can be con-
flated, consider the common practice of employing null hypothesis 
significance testing (NHST)23 to reject a null hypothesis23,24 that some 
theoretically motivated effect is absent (that is, is exactly zero) with a 
confidence that is controlled by a fixed false-positive rate, traditionally 
set to 5%. For example, a study might seek to reject the null hypothesis 
that a job applicant’s perceived race has no effect on their prospects 
of being hired25, or that ethnic or religious divisions within a country 
have no effect on the likelihood of civil war15.

As many previous authors have noted, NHST has been widely mis-
applied in numerous ways—underpowered experiments, multiple 
comparisons, inappropriate stopping rules, and so on—that tend to 
produce a surprisingly high rate of false-positive findings26,27, and have 
led to widely discussed replication problems28. From the perspective of 
integrating explanation and prediction, NHST is problematic for other, 
more fundamental reasons. NHST invokes the language of prediction; 
however, the prediction that is being made is often not directly about 
the outcome of interest, nor even about the magnitude of some theo-
retically interesting effect, but simply that the hypothesized effect 
is not zero. In other words, a common application of NHST is not so 
much to test predictions at all but instead to argue that a theory is not 
inconsistent with the data and then to use the theory as an explanatory 
tool. Furthermore, while there are circumstances under which it is use-
ful to show that an effect is unlikely to be zero, in the complex world 
of human and social behaviour it is highly likely that many effects are 
non-zero29,30. Showing that one’s preferred theory cannot be ruled out 
by the data is therefore an exceptionally weak test of the theory31,32, and 
hence explains much less than it appears to.

Conversely, purely predictive exercises can also risk confusing pre-
diction with explanation. Predictive models that exploit statistical 
associations to forecast outcomes, sometimes with seemingly impres-
sive accuracy, can confer the feeling of having understood a phenom-
enon. But they often rely, sometimes implicitly, on the assumption that 
these predictions are to be evaluated exclusively in settings where the 
relationships between the predictors and the outcome of interest are 
stable33. As a result, model performance can change markedly under 
interventions that alter the associations in question19, or can otherwise 
result in biased or misleading interpretations34.

In fact, ‘predicting an outcome’ can refer to many different activities 
for which expectations of accuracy may vary widely. For example, the 
finding that the volume of influenza-related search queries in a particu-
lar geographic region is highly correlated (r = 0.9) with caseload data 
from the US Centers for Disease Control (CDC) reported two weeks later 
seems impressive, until it is revealed that the same correlation can be 
obtained directly from the CDC data alone simply by using case counts 
from previous weeks to forecast those for future weeks35. Whether 
a particular model is considered valuable or not therefore depends 
not only on its absolute performance, but also its comparison to the 
appropriate baseline(s).

In addition, the very same model estimated on the same data can 
yield qualitatively different conclusions regarding apparent predictive 
accuracy—ranging from ‘extremely accurate’ to ‘relatively poor’—sim-
ply by making different choices during the evaluation procedure36. 
By analogy with NHST, not only can predictive modelling appear to 
generate explanations when it does not; the predictions themselves 
may be much weaker than they appear.

A framework for integrative modelling
As these examples illustrate, the relationship between explanation 
and prediction is often blurry in practice and can lead to confusion 
about which goals are being satisfied by any particular research activ-
ity. To clarify our thinking, we shift from talking about explanation and 
prediction in the abstract to more specifically discussing the types of 
empirical modelling activity that are common throughout computa-
tional and social science.

We emphasize that our focus here is on empirical modelling activi-
ties, not theoretical modelling such as mathematical and agent-based 
modelling. Theoretical work, which includes modelling as well as sub-
stantive and qualitative theory, is an essential counterpart to empirical 
work—for example, theory is necessary in order to identify appropriate 
constructs to measure or predict, or to propose hypotheses to test. 
Here, however, we wish to focus on research activities whose aim is 
to test and validate models using empirical data. To further clarify 
the scope of our argument, by ‘models’ we mostly mean the types of 
statistical and algorithmic models that are widely used in quantitative 
social science, data science, and applied machine learning. However, 
our framework could also be applied to explanatory and predictive 
analyses more generally (for example, mechanistic models, small-n case 
studies or comparative studies, studies using prediction markets, and 
so on) as long as they somehow use empirical data to validate explana-
tions or predictions.

Concretely, we propose the conceptual framework illustrated sche-
matically in Table 1. The two dimensions of the Table represent differing 
levels of emphasis placed on explanation and prediction, respectively, 
where we have partitioned the space into four quadrants: descriptive 
modelling, explanatory modelling, predictive modelling, and integra-
tive modelling.

Descriptive modelling (quadrant 1) refers to activities that are funda-
mental to any scientific endeavour: how to think about, define, meas-
ure, collect, and describe relationships between quantities of interest. 
Activities in this quadrant include traditional statistics and survey 
research as well as computational methods such as topic modelling 
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and community detection in networks10. For example, much of what 
is known about public opinion, the state of the economy, and everyday 
human experience is derived from survey research, whether conducted 
by federal statistical agencies such as the Bureau of Labour Statistics or 
research organizations such as Pew Research Center. Statistical analyses 
of administrative data are also often descriptive in nature. For example, 
recent studies have documented important differences in mortality 
rates37, wealth gaps38 and intergenerational economic mobility39 across 
racial and ethnic groups. Qualitative and comparative methods that 
are popular in sociology, communications, and anthropology also 
fall into this quadrant. Finally, much of the progress in computational 
social science to date has been in using digital signals and platforms to 
investigate previously unmeasurable concepts5,40. Descriptive work, in 
other words, whether qualitative or quantitative, is useful and interest-
ing in its own right and also foundational to the activities conducted 
in the other three quadrants.

Moving beyond description, explanatory modelling (quadrant 
2) refers to activities whose goal is to identify and estimate causal 
effects, but that do not focus directly on predicting outcomes. Most 
of traditional empirical sociology, political science, economics, 
and psychology falls into this quadrant, which encompasses a wide 
range of methods, including statistical modelling of observational 
data, lab experiments, field experiments, and qualitative methods. 
Some methods (for example, in randomized or natural experiments, 
or non-experimental identification strategies such as instrumental 
variables and regression discontinuity designs) isolate causal effects 
by design, whereas others (for example, regression modelling, qualita-
tive data) invoke causal interpretations based on theory. Regardless, 
methods in this quadrant tend to prioritize simplicity, considering one 
or only a handful of features that may affect an outcome of interest. We 
emphasize that these approaches can be very useful for understanding 
individual causal effects, shaping theoretical models, and even guiding 
policy. For example, field experiments that show that job applicants 
with characteristically ‘Black’ names are less likely to be interviewed 
than those with ‘white’ names25 reveal the presence of structural rac-
ism and inform public debates about discrimination with respect to 
gender, race, and other protected attributes. Relatedly, quantifying 
difficult-to-assess effects, such as the impact of gender and racial 
diversity on policing41, can motivate concrete policy interventions. 
Nonetheless, the emphasis on studying effects in isolation can lead to 
little, if any, attention being paid to predictive accuracy. As many effects 
are small, and simple models can fail to incorporate the broader set of 
features pertinent to the outcome being studied, these methods can 
suffer from relatively poor predictive performance.

In contrast with explanatory modelling, predictive modelling 
(quadrant 3) refers to activities that attempt to predict the outcome 
of interest directly but do not explicitly concern themselves with the 
identification of causal effects. ‘Prediction’ in this quadrant may or may 
not be about actual future events; however, in contrast with quadrants 
1 and 2, it refers exclusively to ‘out of sample’ prediction42, meaning 

that the data on which the model is evaluated (the held-out or test 
data) are different from the data on which the model was estimated 
(the training data). Activities in this quadrant encompass time series 
modelling43, prediction contests44, and much of supervised machine 
learning10, ranging from simple linear regression to complex artificial 
neural networks. By evaluating performance on a held-out test set, 
these methods focus on producing predictions that generalize well to 
future observations. From a policy perspective, it can be helpful to have 
high-quality forecasts of future events even if those forecasts are not 
causal in nature9,45–47. For example, applications of machine learning to 
human behaviour abound in online advertising and recommendation 
systems, but can also detect potentially viral content on social media 
early in its trajectory48. Although these algorithms do not identify what 
is causing people to click or content to spread, they can still be useful 
inputs for decision-makers—for example, alerting human reviewers 
to check potentially large cascades for harmful misinformation. That 
said, there is often an implicit assumption that the data used to train 
and test the model come from the same data-generating process, akin 
to making forecasts in a static (albeit possibly noisy) world. As a result, 
while these methods often work well for a fixed data distribution, they 
may not generalize to settings in which features or inputs are actively 
manipulated (as in a controlled experiment or policy change) or change 
as a result of other, uncontrolled factors.

Combining the explanatory properties of quadrant 2 and the pre-
dictive properties of quadrant 3, integrative modelling (quadrant 4) 
refers to activities that attempt to predict as-yet unseen outcomes 
in terms of causal relationships. More specifically, whereas quad-
rant 3 concerns itself with data that are out of sample, but still from 
the same (statistical) distribution, here the focus is on generalizing 
‘out of distribution’ to a situation that might change either naturally, 
owing to some factor out of our control, or because of some inten-
tional intervention such as an experiment or change in policy. This 
category includes distributional changes for settings that we have 
observed before (that is, setting an input feature to a specific value, 
rather than simply observing it to be at that value) as well as the more 
extreme case of entirely new situations (that is, setting an input feature 
to an entirely new value that we have never seen before). Integrative 
modelling therefore requires attention to quadrant 2 concerns about 
estimating causal, rather than simply associational, effects49, while 
simultaneously considering the impact of all such effects to forecast 
outcomes as accurately as possible (that is, quadrant 3). Ideally work 
in this quadrant would generate high-quality predictions about future 
outcomes in a (potentially) changing world. However, forcing one’s 
explanations to make predictions can reveal that they explain less than 
one would like15,50, thereby motivating and guiding the search for more 
complete explanations51. Alternatively, such a search may reveal the 
presence of a fundamental limit to predictive accuracy that results 
from the presence of system complexity or intrinsic randomness52, 
in which case the conclusion may be that we can explain less than we 
would like, even in principle53.

Table 1 | A schematic for organizing empirical modelling along two dimensions, representing the different levels of emphasis 
placed on prediction and explanation

No intervention or distributional changes Under interventions or distributional changes

Focus on specific features or effects Quadrant 1: Descriptive modelling  
Describe situations in the past or present (but neither 
causal nor predictive)

Quadrant 2: Explanatory modelling  
Estimate effects of changing a situation (but many effects 
are small)

Focus on predicting outcomes Quadrant 3: Predictive modelling  
Forecast outcomes for similar situations in the future  
(but can break under changes)

Quadrant 4: Integrative modelling  
Predict outcomes and estimate effects in as yet unseen 
situations

The rows highlight where we focus our attention (on either specific features that might affect an outcome of interest, or directly on the outcome itself), whereas the columns specify what types 
of situations we are modelling (a ‘fixed’ world in which no changes or interventions take place, or one in which features or inputs are actively manipulated or change owing to other uncontrolled 
forces).
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In addition to clarifying the distinction in practice between predictive 

and explanatory research activities, Table 1 illustrates our second main 
point: that whereas quadrants 1, 2, and 3 are all amply populated both 
with traditional and computational social science research, quadrant 
4 is—with a handful of possible exceptions that we discuss in detail 
below—relatively empty. To an extent, the sparsity of quadrant 4 is not 
surprising. Models that carefully synthesize the causal relationships 
between different relevant factors to make high-quality predictions of 
future outcomes are inherently more difficult to formulate and evalu-
ate than models that aim only for explanatory or predictive power in 
isolation. Nonetheless, we also believe that quadrant 4 activities are 
rare because they require one to embrace epistemic values that have 
historically been regarded as standing in opposition to one another; 
that is, that explanatory insight necessarily comes at the cost of predic-
tive accuracy and vice versa. If this is true, then viewing them instead 
as complements, wherein each can reinforce the other, repositions 
quadrant 4 not as a painful tradeoff but rather as an exciting opportu-
nity for new and impactful research.

To be clear, the opportunity highlighted by Table 1 is not that 
researchers, computational or otherwise, should focus only or even 
mostly on quadrant 4. To the contrary, an enormous amount of inter-
esting, high-quality social science exists in the other quadrants, and 
we see no reason for that not to continue. Indeed, even if one’s goal is 
to end up in quadrant 4, it is arguably impossible to get there without 
spending a good deal of time in quadrants 1, 2, and 3. Nonetheless, as 
we will argue in the next section, quadrant 4 research activities that 
explicitly integrate explanatory and predictive thinking are likely to 
add value over and above what can be achieved in quadrants 1–3 alone; 
thus quadrant 4 deserves more attention than it has received so far.

Suggestions
The opportunity that we have just highlighted in turn provokes three 
related suggestions for methodological innovation in computational 
social science. First, we make our call for the integration of explana-
tory and predictive modelling more concrete by sketching out some 
specific approaches to quadrant 4 research. Second, we advocate for 
an explicit labelling system that can be used to more clearly character-
ize individual research contributions, identifying both the quadrant 
to which it belongs and the level of granularity offered by it. Third, 
we note that open science practices that have been developed within 
the explanatory modelling community can be adapted to benefit the 
predictive modelling community, and vice versa.

Integrate modelling approaches
Our first suggestion is to encourage more work in quadrant 4 by 
identifying concrete ways of integrating predictive and explanatory 
modelling. At the highest level, simply thinking explicitly about which 
quadrants our current models sit in can motivate integrative research 
designs. Take the example of understanding how information spreads 
through a social network, a question that has received a great deal of 
attention with the recent availability of data from online social networks 
that makes it possible to track with high fidelity how content spreads 
from one person to the next. At this point there have been hundreds, 
if not thousands, of studies that explore this question54. Some sit 
squarely in quadrant 1, as purely descriptive studies that measure the 
size and structure of large and representative sets of online information 
cascades48,55. These efforts have provided insights into how content 
spreads, some of which align with ideas put forth several decades ago56 
and others that challenge them57.

Other studies lie in quadrants 2 and 3. For instance, there is work in 
quadrant 2 that aims to identify features of online content that have 
a causal effect on the spread of information58. Here regression mod-
els are used to estimate the extent to which a handful of high-level 
sentiment features (for example, awe, anger, sadness) affect how far 

content spreads. This work proposes a theory in which content that 
reflects positive sentiments spreads further than negative content. 
Conversely, in quadrant 3 is research that uses as much information as 
possible to passively forecast content popularity48,59,60. Here machine 
learning techniques are used with an eye towards maximizing predic-
tive accuracy, resulting in statistical models that exploit many features 
without necessarily focusing on which of these relationships are causal 
as opposed to merely correlational.

As yet, little, if any, work on this problem would fall in quadrant 4; 
however, such studies are easy to imagine. For example, one might 
attempt to explicitly predict the spread of content that has been experi-
mentally manipulated, say by changing content that an individual plans 
to post to affect its emotional valence or by studying how the same piece 
of content spreads when exogenously seeded to different individuals. 
Experiments of this sort would immediately reinforce or challenge 
results from the other quadrants and would also help to formulate 
predictively accurate causal explanations.

Orienting our attention towards integrative modelling can also 
inspire new ways of evaluating the robustness of our findings in other 
quadrants. Specifically, we can ask how well our estimates and predic-
tions generalize under the types of interventions or changes consid-
ered in quadrant 4. In practice, this would mean more cross-domain 
or out-of-distribution model testing: how well does a causal estimate 
made in one domain transfer to another domain, or how well does a pre-
dictive model fit to one data distribution generalize to another? While 
informal acknowledgements are often made regarding limitations to 
generalizability, it is currently rare to see explicit tests of this type in 
published research. Many of our models are likely to fail at these tasks, 
but it would be better to clearly recognize and quantify the progress 
yet to be made than to lose sight of developing high-quality, integrative 
models that would succeed at them.

Methods from one quadrant can also be leveraged to benefit work in 
another. In quadrant 2 there are recent examples of using methods from 
machine learning to improve the causal estimates made with existing 
explanatory techniques, such as matching and instrumental variables61, 
as well as to develop new techniques such as adaptive experimentation 
to more efficiently learn the effects of deploying different policies62 and 
‘causal tree’ models for estimating heterogeneous treatment effects63. 
Predictive models have also been used here as a benchmark to assess 
the ‘completeness’ of explanatory models51. Conversely, in quadrant 3 
there are prominent examples in which structural causal models have 
been leveraged to improve the generalizability of predictive models49,64.

We can also imagine methods that truly sit in quadrant 4. For example, 
structural modelling in economics and marketing aspires to “identify 
mechanisms that determine outcomes and are designed to analyse 
counterfactual policies, quantifying impacts on specific outcomes as 
well as effects in the short and longer run.”65. An example entails using 
estimated models of consumer preferences derived from historical 
choice data to analyse the effect of a proposed merger. While it is rare 
to find studies that directly assess the predictive power of such models, 
as they often concern not-yet-implemented changes, such an extension 
is clearly possible. For example, Athey et al.66 used data from sealed-bid 
auctions to estimate bidder values and make predictions about open 
ascending auctions, and the predictions were then compared to out-
comes in those auctions.

Another method that we believe is particularly promising for making 
progress in quadrant 4 is akin to a ‘coordinate ascent’ algorithm, wherein 
researchers iteratively alternate between predictive and explanatory 
modelling. Agrawal et al.12 provide an example of this kind of approach, 
combining the methods of psychology and machine learning. Their 
starting point was the Moral Machine dataset, a large-scale experiment 
that collected tens of millions of judgments from participants all over 
the world solving ‘trolley car’ moral reasoning problems67. The original 
study was focused on estimating causal effects, manipulating vari-
ables related to the identity of the members of different groups who 
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could be hit by an out-of-control vehicle and measuring the changes 
in participants’ judgements of the moral acceptability of different 
outcomes. Agrawal et al.12 used this dataset as the basis for building 
a predictive model, using a black box machine learning method (an 
artificial neural network) to predict people’s decisions. This predictive 
model was used to critique a more traditional cognitive model and to 
identify potential causal factors that might have influenced people’s 
decisions. The cognitive model was then evaluated in a new round of 
experiments that tested its predictions about the consequences of 
manipulating those causal factors.

Clearly label contributions
Our second suggestion is deceptively simple: researchers should clearly 
label their research activities according to the type of contributions 
they make. Simply adding labels to published research sounds trivial, 
but checklists68, badges69, and other labelling schemes are already a 
central component of efforts to improve the transparency, openness, 
and reproducibility of science70. Inspired by these efforts, we argue 
that encouraging researchers to clearly identify the nature of their 
contribution would be clarifying both for ourselves and for others, and 
propose the labelling scheme in Table 2 for this purpose. We anticipate 
that many other labelling schemes could be proposed, each of which 
would have advantages and disadvantages. At a minimum, however, we 
advocate for a scheme that satisfies two very general properties: first, 
it should differentiate as cleanly as possible between contributions 
in the four quadrants of Table 1; and second, within each quadrant it 
should identify the level of granularity (for example, high, medium or 
low) that is exhibited by the result.

Focusing first on the columns of Table 2, we recognize that the 
boundaries of the quadrants will, in reality, be blurry, and that indi-
vidual papers will sometimes comprise a blend of contributions across 
quadrants or granularity levels; however, we believe that surfacing 
these ambiguities and making them explicit would itself be a useful 
exercise. If, for example, it is unclear whether a particular claim is merely 
descriptive (for example, there exists a difference in outcome variable 
y between two groups A and B) or is intended as a causal claim (for 
example, that the difference exists because A and B differ on some other 
variable x), requiring us to attest that our model tests a causal claim in 
order to place it in quadrant 2 should cause us to reflect on our choice 
of language and possibly to clarify it. Such a clarification would also 
help to avoid confusion that can arise from any given research method 
falling into more than one quadrant, depending on the objectives of 
the researcher (see example in Box 1).

Focusing next on the rows, Table 2 is also intended to clarify that it 
is possible to engage in activities that reveal widely different amounts 
of information while remaining within a given quadrant. In quadrant 
1, for example, a description that specifies the association between 
individual-level attributes and outcomes tells us more about a phe-
nomenon than one that does the same things at the level of population 

averages or ‘stylized facts’ (that is, the sort of qualitative statements that 
are often used in summaries of scientific work, such as “income rises 
with education”). In quadrant 2, estimating the magnitude of an effect 
is more informative than determining only its sign (positive or nega-
tive), which is in turn more informative than simply establishing that it 
is unlikely to be zero. Likewise, estimates of effect sizes made across a 
range of conditions are more informative than those that are made for 
only one set of conditions (for example, the particular settings chosen 
for a lab experiment14). In quadrant 3, predictions about outcomes 
can also be subjected to tests at widely different levels, depending on 
numerous, often benign-seeming, details of the test36. For example: (a) 
predictions about distributional properties (for example, population 
averages) are less informative than predictions of individual outcomes; 
(b) predictions about which ‘bucket’ an observation falls into (for exam-
ple, above or below some threshold, as in most classification tasks) tell 
us less than predictions of specific outcome values (as in regression); (c) 
ex-ante predictions made immediately before an event are less difficult 
than those made far in advance; and (d) predictions that are evaluated 
against poor or inappropriate baseline models—or where a baseline is 
absent—are less informative than those that are compared against a 
strong baseline35. The same distinctions apply to quadrant 4, with the 
key difference being that claims made in this quadrant are evaluated 
under some change in the data-generating process, whether through 
intentional experimentation or changes that result from other external 
factors. Requiring researchers to state explicitly the level of granularity 
at which a particular claim is made will, we hope, lead to more accurate 
interpretations of our findings.

Standardize open science practices
Our third suggestion is to standardize open science practices between 
those engaged in predictive and explanatory modelling. Over the last 
several years, scientists working in each tradition have promoted best 
practices to facilitate transparent, reproducible, and cumulative sci-
ence; specifically, pre-registration in the explanatory modelling com-
munity71, and the common task framework in the predictive modelling 
community72. Here we highlight how each community can learn from 
and leverage best practices developed in the other.

Pre-registration. Pre-registration is the act of publicly declaring one’s 
plans for how any given research activity will be done before it is actually 
carried out and is designed with a simple goal in mind: to make it easier 
for readers and reviewers to tell the difference between planned and 
unplanned analyses. This procedure can help to calibrate expectations 
about the reliability of reported findings and, in turn, reduce the inci-
dence of unreliable, false-positive results in research that tests a given 
hypothesis or prediction27,71. Specifically, pre-registration reduces the 
risk of making undisclosed post hoc, data-dependent decisions (for 
example, which of many possible statistical tests to run) that can lead 
to non-replicable findings.

Table 2 | A label scheme for clarifying the nature and granularity of research contributions according to the four quadrants 
discussed above

Granularity Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

Describes something Tests a causal claim Tests a (passive) predictive claim Tests a claim both for causality and predictive accuracy

Low Reports stylized facts Tests for a non-zero effect Predicts directional or aggregate 
outcomes

Predicts directional or aggregate outcomes under 
changes or interventions

Medium Reports population 
averages

Tests for a directional effect Predicts magnitude and direction 
of aggregate outcomes

Predicts magnitude and direction of aggregate 
outcomes under changes or interventions

High Reports individual 
outcomes

Estimates the magnitude 
and direction of an effect

Predicts magnitude and direction 
of individual outcomes

Predicts magnitude and direction of individual outcomes 
under changes or interventions

The rows distinguish between different levels of granularity in each quadrant. By ‘directional’, we mean results that report only whether a given association or effect is positive or negative in 
sign, whereas by ‘magnitude and direction’ we mean not only the sign of a relationship but also the numerical size of the correlation or effect.
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Until now, pre-registration has been applied almost entirely in the 
context of what we call explanatory modelling (quadrant 2), where small 
sample sizes (for example, in randomized controlled trials) combined 
with undisclosed flexibility in the data analysis and modelling process 
led to a high incidence of researchers being unable to replicate pub-
lished results. However, we believe that it could also be valuable for 
predictive modelling (quadrant 3) where, in spite of much larger sample 
sizes, researchers still have many degrees of freedom73 in their analytical 
choices. Furthermore, pre-registration can offer a cleaner delineation 
between the data used to train and validate a model (also known as 
postdiction71) compared to the data used to test it (prediction). The 
former should be used to develop a model, while the latter should be 
used only once, at the point when all aspects of a model (including its 
complexity, hyperparameters, and so on) have been determined and 
it is ready to be evaluated. While this distinction is clear in theory, in 
practice research can suffer from confusion about validation versus 
test datasets, or from multiple uses of test sets within the modelling 
process74,75.

In practice, pre-registration suffers from a number of limitations that 
reduce its value and complicate the interpretation of pre-registered 
findings71. On its own, in other words, it is not a panacea. Nonetheless, 
the increased use of pre-registration in both explanatory and predictive 
modelling activities would be likely to reduce the incidence of unreli-
able results and to improve the transparency and replicability of scien-
tific workflows. Reinforcing pre-registration is the related practice of 
registered reports76,77, wherein researchers submit their pre-registered 
research and analysis plan for peer review before carrying out the study. 
While registered reports also have their implementation challenges, 
their adoption would place more emphasis on the quality of the ques-
tions being asked and the methods used to answer them than on the 
answers themselves.

Common task framework. A second practice that could be standard-
ized across communities is use of the common task framework72 to cen-
tralize the collective efforts of many researchers in a given field. In this 
paradigm there is agreement upon a question of interest, a dataset that 
pertains to it, and a specific modelling task to be undertaken with that 
dataset to address the motivating question. An organizer then makes 
some of the data available to participants and declares the criteria by 
which research efforts will be evaluated. Participating researchers can 
then iterate between developing their models and submitting them for 

evaluation. Importantly, this evaluation happens on a separate, hidden 
test set that is accessible to the organizer but not the participants, which 
helps to guard against overfitting to a particular subset of the data.

The common task framework originated in the predictive model-
ling community where it is often used for ‘prediction contests’ such 
as the prominent Netflix Prize Challenge78. However, the common task 
framework has benefits beyond simply increasing predictive perfor-
mance, and both the predictive and explanatory modelling communi-
ties could benefit from adopting it more broadly. In terms of predictive 
modelling, increased use of the common task framework would result 
in easier comparison and synthesis between what are currently dispa-
rate research efforts. Recalling the task of predicting how information 
spreads discussed earlier, there are currently many such efforts that 
are quite difficult to compare because although they claim to tackle 
the same problem, they each use different datasets, define different 
modelling tasks, or use different metrics to quantify success36. Central-
izing these efforts under the common task framework would force a 
diverse set of researchers to find common ground in deciding on what 
the real problems of interest are. It would also standardize the evalu-
ation of progress and make it easy to combine insights across studies.

Likewise, the common task framework could be useful for explana-
tory modelling. In fact, the common task framework can be thought 
of as a way of scaling up pre-registration and registered reports from 
individual researchers to collections of research teams or even entire 
fields. One example is the recent Fragile Families Challenge50, which 
tasked researchers with the problem of forecasting different life 
outcomes for disadvantaged children and families. This use of the 
common task framework not only centralized efforts on a prediction 
problem that is important in its own right, but also generated novel 
questions about the predictability of different life outcomes for the 
social science community. Another example is the Universal Causal 
Evaluation Engine80, which facilitates collective progress on causal 
inference through the common task framework79. The organizers create 
synthetic data (for which they know the true causal effects) and make 
it available to participants who can submit estimates of those effects 
using their preferred methods. This procedure allows for unbiased 
evaluation of different inference methods across a range of research-
ers and research problems.

Outlook
The goal of this Perspective is to advocate for advancing research in 
the computational and social sciences by integrating predictive and 
explanatory approaches to scientific inquiry. Our suggestions for doing 
so, discussed in detail above and summarized in Box 2, are intended to 
clarify existing styles of work as well as providing useful and actionable 
advice for researchers interested in integrative modelling. At the same 
time, we note that the suggestions that we make here are not exhaus-
tive, comprehensive, or without challenges: integrative modelling as 
we have described it is, on its own, neither necessary nor sufficient for 
our collective success as a field.

Notably, the issue of model interpretability is missing from the 
framework and suggestions presented above. Specifically, in dis-
cussing explanatory modelling, we have focused on the estimation 
of causal effects, regardless of whether those effects are explicitly 
tied to theoretically motivated mechanisms that are interpretable 
as “the cogs and wheels of the causal process”7. This is not because 
we do not find value in uncovering and understanding causal mecha-
nisms, but rather because it is our view that interpretability is logi-
cally independent of both the causal and predictive properties of a 
model. That is, in principle a model can accurately predict outcomes 
under interventions or previously unseen circumstances (out of dis-
tribution), thereby demonstrating that it captures the relevant causal 
relationships, and still be resistant to human intuition (for example, 
quantum mechanics in the 1920s). Conversely, a theory can create 

Box 1

How to label a contribution
A regression model of the form � �=y βx can equally appear in all four 
quadrants, depending on how the equation is applied and 
interpreted. In quadrant 1, the association between the outcome 
and the predictor(s) x is simply described without any causal 
interpretation or claim about predictive accuracy. In quadrant 2, 
the same model can be estimated but the focus is on the sign, 
statistical significance, and sometimes size of the estimated 
coefficient β�, often tied to a causal interpretation derived from 
substantive theory. In quadrant 3, the same equation can again be 
estimated, but now the focus is on measuring the error (for 
example, R2) associated with predicted values of y� by comparing 
them with previously unseen observations45. Finally, the same 
model could fall into quadrant 4 if the goal is to compare the 
predictive accuracy of different theories51, and potentially to guide 
the development of new theories12,84 that are either more 
predictively accurate or that generalize to a broader set of 
circumstances.
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the subjective experience of having made sense of many diverse phe-
nomena without being either predictively accurate or demonstrably 
causal81 (for example, conspiracy theories).

Interpretable explanations, of course, can be valued for other 
reasons. For example, interpretability allows scientists to ‘mentally 
simulate’ their models, thereby generating plausible hypotheses for 
subsequent testing. Clearly this ability is helpful to theory develop-
ment, especially when data are sparse or noisy, which is often the case 
for social phenomena. Equally important, interpretable models are 
often easier to communicate and discuss (verbally or in text), thereby 
increasing the likelihood that others will pay attention to them, use 
them, or improve upon them. In other words, interpretability is a per-
fectly valid property to desire of an explanation, and can be very useful 
pragmatically. It is our opinion, however, that it should be valued on its 
own merits, not on the grounds that it directly improves the predictive 
or causal properties of a model.

We also acknowledge that there are costs associated with adopting 
the integrative modelling practices that we have described. As men-
tioned earlier, evaluating explanations in terms of their predictive 
accuracy may reveal that our existing theories explain less than we 
would like53. Likewise, clearly labelling contributions as descriptive, 
explanatory, predictive and so on may cast our findings in a less flat-
tering light than if they are described in vague or ambiguous language. 
Pre-registration requires additional time and effort from individual 
researchers, and some have criticized it as de-emphasizing important 
exploratory work. Increased adoption of registered reports requires 
changes to editorial and review processes, and therefore the coordi-
nation of many individuals with potentially disparate interests. The 
common task framework demands a great deal of effort on the part 
of those organizing an instance of it82, as well as adoption by others in 
the field once a task is created. It is also subject to what has been called 
Goodhardt’s law83: “When a measure becomes a target, it ceases to be 
a good measure.”

That said, it is our view that wider adoption of these practices would 
be a net benefit for the field of computational social science. Explora-
tory work is important and should be encouraged, but pre-registration 
is crucial in that it helps to distinguish the act of testing models from 
the process of building them. Registered reports help us to focus on 
the informativeness of inquiries being conducted without biasing 
our attention based on the outcomes of those tests. And the common 
task framework provides a way of uniting sub-fields and disciplines 
to accelerate collective progress. Most importantly, thinking clearly 
about the epistemic values of explanation and prediction not only 
helps us to recognize their distinct contributions but also reveals new 
ways to integrate them in empirical research. Doing so will, we believe, 

facilitate more replicable, more cumulative, and ultimately more use-
ful social science.
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