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Future directions in human mobility science

Luca Pappalardo    1, Ed Manley2,3, Vedran Sekara4 & Laura Alessandretti    5 

We provide a brief review of human mobility science and present three 
key areas where we expect to see substantial advancements. We start 
from the mind and discuss the need to better understand how spatial 
cognition shapes mobility patterns. We then move to societies and argue 
the importance of better understanding new forms of transportation. 
We conclude by discussing how algorithms shape mobility behavior and 
provide useful tools for modelers. Finally, we discuss how progress on these 
research directions may help us address some of the challenges our society 
faces today.

It was around 130 years ago when scientists first found evidence for 
universal properties in human mobility patterns. Looking at the places 
of birth and residence of individuals living in the United Kingdom, 
German–British geographer Ernest George Ravenstein found out that 
simple laws could capture migration within and across the country1,2. 
It was a pioneering result that laid the ground for what is still—over a 
century later—a very active research field3,4. These achievements are 
even more remarkable in view of the limitations of the census registry 
data used at the time—coarse spatial resolution and no time informa-
tion—and the titanic work carried out by statisticians and clerks who 
would manually process handwritten records into statistical tables. 
Since then, the field has evolved dramatically (Fig. 1a,b). From migra-
tion to navigation, via commuting and running day-to-day errands, 
we have now uncovered regularities in many human activities that 
involve movements3,4.

These developments were made possible by the availability of 
increasingly detailed and comprehensive data. In the past 20 years, 
the field of human mobility has evolved hand-in-hand with the devel-
opment and now widespread diffusion of positioning technologies, 
which were first embedded in mobile phones and vehicle navigation 
systems, and are now in smartphones and wearable devices (Fig. 1c). 
Today, it is estimated that 6.6 billion individuals own a smartphone, 
meaning that about 85% of the world population move with a location 
sensor in their pockets5.

Concurrently, the study of behavioral data with expanding scale 
and complexity has been empowered by tremendous advances in com-
putation. Cloud and distributed computing have facilitated the stor-
age and analysis of massive spatiotemporal datasets; computational 
modeling through simulations has helped study complex, nonlinear 
systems, previously considered intractable6–11; statistical learning 

algorithms have been used to extract patterns from complex behavioral 
data12–14, and to predict15,16 and generate17–20 mobility trajectories with 
unprecedented success.

From a statistical standpoint, a trajectory is understood as an 
alternation of stays—when an individual spends time at a given loca-
tion—and displacements, or the navigation between locations3,18,21,22. 
Considering the sequences of stays alone, we have achieved an under-
standing that was simply unimaginable 20 years ago. We have been able 
to capture the statistics of stays across an almost exhaustive range of 
spatial and temporal scales, from short visits to shops up to residential 
moves4,12,23–26. We have been able to describe how trip purpose27–29 and 
urban characteristics30,31 impact travel by enriching sequences of stays 
with data describing the built and natural environment. Furthermore, 
it has been possible to describe differences across individuals, based 
on, for instance, gender, age, socioeconomic status and country of 
residence13,25,32–34.

Remarkably, notwithstanding the individuality of each per-
son, we have discovered that many properties of travel patterns are 
shared across people. This includes, for example, the probability  
to travel at a given distance12,35–37; the frequency at which we  
visit11,35,38, explore10,39 and renew location40,41; the way we allocate  
time among places42; the predictability of human mobility38,43–46; 
the hierarchical nature of travel6; the spatiotemporal structure of  
individual mobility networks47,48; and the link between individual  
and collective flows11,48,49 (Fig. 1d).

Why these regularities emerge, however, is not yet entirely under-
stood. Agent-based modeling has revealed how the observed patterns 
could result from simple decision-making mechanisms that are shared 
across individuals6,10,11,36,42, but, in many cases, these hypotheses lack 
empirical demonstration. It is also worth noting the critical role played 
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We conclude with a focus on algorithms, and artificial intelligence (AI) 
in particular, discussing how they are not only helping us to understand 
and model human mobility but also impacting mobility behavior.

Mind (spatial cognition and mobility choices)
Many everyday travel tasks, from planning one’s own way in space, to 
locating resources, rely on our ability to organize and retrieve spatial 
knowledge. The human mind, however, forms a limited and distorted 
picture of the physical space50. Understanding how the human brain 
organizes spatial knowledge, or builds so-called cognitive maps, is 
central to understanding mobility behavior, and ultimately to planning 
human-centered cities and transportation systems.

by data across all areas of human mobility science and the different 
issues that may come with them (Box 1).

As we see more advances in computation, from deep genera-
tive models to federated learning, and embrace new technologies, 
from mobile electroencephalography to self-driving cars and sensors 
deployed in smart cities, the study of human mobility will continue 
to flourish. In this Perspective, we discuss three key areas where we 
expect to see substantial advancements. We start precisely from the 
mind and discuss the need to better understand how cognition shape 
human movements, especially in navigation. We then move to socie-
ties and discuss the critical need to better understand new forms of 
transportation and the opportunity of studying social mixing in cities.  
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Fig. 1 | Human mobility data sources. a, The yearly number of publications 
on human mobility as obtained by querying Google Scholar with Q = (‘human 
mobility’ OR ‘mobility network’ OR ‘mobility flow’ OR ‘flow of mobility’ OR 
‘mobility dynamics’ OR ‘mobility patterns’). b, The number of human mobility 
publications for minds, societies and algorithms. The results were obtained 
by querying Google Scholar: for minds (circles), Q AND (‘spatial cognition’ OR 
‘psychology’ OR ‘navigation’ OR ‘cognitive mechanism’ OR ‘spatial memory’); 
for societies (squares), Q AND (‘transportation’ OR ‘public transport’ OR 
‘multimodal’ OR ‘sustainable’); for algorithms (triangles), Q AND (‘machine 
learning’ OR ‘artificial intelligence’ OR ‘AI’ OR ‘computational’). c, Individual 
mobility paths. From left to right: individual travel paths, mobility from call 

detail records (CDR) data, GPS data collected via smartphones apps, and travel 
paths estimated from smartcards. For CDR data, mobility is reconstructed as 
trips between cell towers (black dots) whenever individuals issue or receive a text 
message or call (the background shapes describe the corresponding Voronoi 
tessellation). GPS data positions are recorded with high spatial resolution, 
typically at fixed time intervals or whenever the accelerometer of the mobile 
device registers a change. Travel-card data capture portions of a trips that are 
traveled using public transportation. d, Collective mobility data are obtained 
through aggregating individual-level data. The example shows the aggregation 
of CDR mobility from multiple individuals.
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Despite all of the advancements in the field of human mobility, 
however, there is still little connection to the broader research on 
the cognitive mechanisms underpinning travel and navigation. The 
structures in our brains—evolved over thousands of years—determine 
how we recall directions, associations between locations and distances 
between those points, and ultimately shape the choices that we all 
make to move through space. While we know that our perceptions and 
memories of space are far from perfect, we have less understanding 
of how these impact human travel. Three areas in the intersection of 
human cognition and mobility are prime for further exploration: spatial 
memory and representation, navigation and mobility choice strategies, 
and influential contexts and personal characteristics.

Memory and representation
As a person moves through space, they build a memory of the distance 
and association between places (Fig. 2d). Initially, the memory consists 
of a set of observed ‘features’ usually aligned along a route (egocentric 
representation, meaning, relative to the self). As one’s experience of 
a place increases, these ‘features’ are integrated into a structure that 
captures their relationship in space (allocentric representation) inde-
pendent of the location of the individual. The resulting representation 

of spatial memory has been called a ‘cognitive map’50, although the 
co-presence of both representations means that a single map is dif-
ficult to isolate.

Those memorable ‘features’ in geographic space play differing 
roles in shaping memory. Landmarks—either culturally significant 
or merely visually salient—are noted as important features in encod-
ing spatial memory. Major road intersections51, routes52, and edges 
of regions and zones53 are other key features in spatial memory. 
Neuroscience would appear to validate many of these proposals. 
Within the hippocampus region of the brain, a set of cells encode 
the position of common objects, preserving an individual map-like 
representation of space: place cells encode salient locations, border 
cells indicate regional boundaries and grid cells capture distance 
between spaces (see ref. 54 for a review). These mechanisms are sup-
ported by head direction cells and goal direction cells, all contribut-
ing to describing subjective position relative to other features, in a 
process known as path integration (Fig. 2e). Findings that features 
are organized within hierarchies55, in which objects (for instance, 
neighborhoods, streets and landmarks) are organized within 
nested structures, has also been recently established in cognitive  
planning processes56.

Box 1

Issues with mobility data
The majority of datasets that are used to estimate human mobility 
(mobile phone records, smartphone apps’ records, social media 
check-ins and travel-card data) are not originally designed for this 
purpose. Therefore, different biases and patterns are introduced 
into the mobility traces, depending on which technology was used 
to collect the data. For instance, mobility inferred from call detail 
records (CDR) or data records (XDR), which are passively collected 
by mobile network operators for billing purposes, can suffer from 
multiple biases160–162. For individuals to be included in the mobility 
sample, they must own a mobile phone, and mobile phone ownership 
has been shown to be biased towards predominantly wealthier, male, 
younger and better-educated populations163–165. It is worth noting, 
however, that the severity of the issue depends on the region of study. 
Statistics from 2020 show that there are large variations between 
countries; in high-income countries there are 122 mobile phone 
subscriptions per 100 people, whereas in low-income countries 
the number is only 59 (ref. 166). Similarly, to be included in a CDR 
or XDR dataset requires individuals to actively make or receive calls 
and texts, or use mobile data. Although pre-paid mobile phone 
subscriptions in a lot of countries include generous limits on calls, 
texts and data usage, for lower-income countries, pay-as-you-go 
subscriptions are still popular. For datasets collected in these places, 
it is vital to be aware that poorer populations will limit their mobile 
activity as making a call, sending a text message or using mobile 
data can be very costly. As a result, they will generate fewer activity 
data and their mobility patterns will be less complete161,167. In addition, 
owing to commercial interests, not all of the regions are equally 
covered by mobile phone operators168, which effectively limits the 
resolution with which mobility traces can be inferred. Mobility traces 
in rural areas are sparse as large areas (100 km2 or larger) are often 
covered by only one antenna, whereas, for urban areas, mobility 
traces are more fine-grained as the density of antenna is much 
higher (down to 1 per 100 m2). Understanding which populations 
are included in the data, at which resolutions their traces can be 
reconstructed and how the data are generated are vital first steps in 
working with biased and incomplete data.

Similar considerations are needed for GPS-inferred mobility data 
from smartphone apps and social media platforms34,169. Datasets that 
are based on apps are often infused by the goals of the platform, the 
app and its owners, which ultimately introduces various patterns into 
the data. For instance, apps that collect GPS data may be socially 
engineering and nudging their users to get them to use the app more 
often. This can happen algorithmically or through some predefined 
heuristics. Nonetheless, this is an invisible occurrence, which is 
difficult to detect, but that will inevitably seep into the mobility data170.

Biases in data, issues regarding mis- or non-representation, 
resolution differences and data skews will manifest differently 
depending on the data source at hand, and on the processes and 
methods used to collect them. Unless these issues are addressed and 
accounted for, they might propagate and affect any insights derived 
from the data161,169.

Unfortunately, there are no easy or standardized fixes. The 
literature is still sparse on how to properly address these issues171,172, 
compounded by the lack of ground-truth estimates of mobility. 
Certain techniques are useful for alleviating some of these issues. 
Examples of these techniques include sampling, post-stratification, 
inclusion of synthetic data from null models, such as the gravity or 
radiation models, and a combination of travel patterns from multiple 
data sources.

In addition, mobility datasets are highly sensitive and can contain 
detailed information regarding people’s whereabouts, financial 
standing25, social graphs173 and countless other behavioral patterns174. 
Attitudes towards individual data collection vary widely, with some 
people fearful of privacy violations, others uncritically enthusiastic 
about technology and some resigned to the practice175. Users tend 
to be willing to share their data if they anticipate substantial benefits, 
even when they have privacy concerns176. Importantly, these diverse 
attitudes can further introduce biases into spatial datasets. The 
difficulties around obtaining informed consent for use of these 
data have no clear solution177. Currently, there is no agreed-upon 
standards, but it is of utmost importance that these data are handled 
in safe, privacy-preserving and ethical ways178.
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It is upon these cognitive representations that mobility choices 
are made. Yet, despite the prevalence of computational models of 
mobility behavior, there have been few linkages made between spatial 
cognition and spatial data representation. An important, qualitative 
framework in instigating research around this area is Kevin Lynch’s The 
Image of the City57, which proposes that perceptions of cities can be 
deconstructed into five elements: edges, nodes, landmarks, regions 
and paths. The Image of the City has been highly influential and led to 
recent implementations in modern spatial data sources58. Focusing on 
specific features of urban space, space syntax researchers have pro-
posed models that capture saliency within road networks, and others 
have focused on recognition of prominent landmarks59. Researchers in 
robotics, in contrast, have sought to explicitly replicate human spatial 
learning60,61. However, aside from prototypical examples62, there is an 

absence of comprehensive proposals that capture how real-world geo-
graphic space is learnt, stored and recalled, and how knowledge varies 
across a population. Such a model (essentially a ‘cognitive geographic 
information system’) would provide a novel basis for measuring how 
humans and space interact.

Navigation and mobility choices
The role of spatial cognition arises in many facets of human mobility, 
including choosing destinations, transport modes and routes, or navi-
gating in new environments. While the majority of previous studies have 
focused on navigation, these mechanisms influence wider travel decisions.

The findings from cognitive science put in doubt persistent 
assumptions in urban and transportation science relating to utility-
optimizing behavior when choosing a route to destination. In urban and 
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cognition. a–e, Spatial navigation is influenced by factors including: social 
interactions and collaboration (a), individual determinants (b), the availability 
of external information (c), cognitive mechanisms consisting of representations 
based of features and scenes (the egocentric ‘scene’ memory), associations 
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target (d), and use of different strategies that work in conjunction with other 
choice architecture, drawing on egocentric (E) and allocentric (A) memory 
representations (e). These strategies include: path integration (E/A), or the 

computation of one’s position by summing the distance and direction traveled 
from a start point; angle minimization (E/A), or choosing paths that minimize the 
deviation from the direction of a target location; hierarchical region refinement 
(A), or developing heuristic navigation rules that build upon an hierarchical 
cognitive models of geographic space; and region- and landmark-based (A) 
strategies, where paths are segmented and planned in reference to specific 
geographic features. Images reproduced: c, map, Moovit, under a Creative 
Commons licence CC BY-SA 3.0; d, scene, under a Creative Commons licence 
CC0; map, ref. 179, under a Creative Commons licence CC BY 2.0.
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transportation studies, route choice has typically been modeled as a 
logistic choice between a set of alternative routes, calibrated using data 
collected through interviews and surveys63, which suffer from small 
sample sizes, missing data and self-reporting biases. These alternatives 
are typically modeled as shortest paths (for instance, paths that take 
the least time or distance), but recent findings in real-world settings 
have established that pedestrians and vehicle drivers do not tend to 
follow optimal routes, and are instead influenced by urban features 
(landmarks, regions and their hierarchical organization), and goal 
distance and direction8,64–67, corroborating experimental evidence 
from cognitive science and neuroscience. The structure of the street 
network clearly also plays a role31, as may greenery68, traffic volume30 
and noise69. Yet, there are considerable opportunities to strengthen 
and expand these findings and develop more sophisticated models, 
informed by our knowledge of the underlying cognitive mechanisms.

Further opportunities arise when considering the mechanism by 
which decisions are modeled, and how these theory are implemented 
into predictive models. Aside from discrete choice, approaches drawn 
from behavioral economics, cognitive modeling70,71 and reinforce-
ment learning have been considered in shaping mobility choices. The 
influence of bounded rationality is increasingly recognized as funda-
mental to choice8, and heuristic frameworks have been proposed72.  
More recently, opportunities that blend theoretical and machine 
learning methods have emerged, including from those in traditional 
methods73 and AI74,75.

Despite our improving understanding of spatial navigation, fewer 
linkages between spatial cognition and more ’strategic’ travel choices 
(for example, destination choice, travel mode and departure time) have 
been established. Recent promising research has begun to consider 
how physiological76 and functional magnetic resonance imaging77 
data can be built into models of spatial and temporal perception, and 
mobility choice. While these findings contribute toward how we model 
spatial and temporal perception, they must be integrated within a 
set of behavioral determinants, including the latest, complementary 
theories of travel choice.

Characteristics, context and information
Beyond the mechanisms influencing mobility, a range of additional 
factors have been shown to mediate mobility (Fig. 2b). Personal charac-
teristics are particularly important. For instance, navigation efficiency 
is lower in females and older people78. The location of your upbringing 
also plays a role31. Mobility or visually impaired travelers face additional 
limits on mobility, for a large part owing to the environment. The con-
text in which the traveler is will be important too. For instance, a tourist 
unfamiliar with an environment navigates differently compared with 
a local, but local knowledge varies considerably too, based on experi-
ence79. In addition, the presence of friends or family introduces a social 
element to navigation, necessitating cooperation and information 
sharing80 (Fig. 2a). Traffic and congestion also prompt en-route changes 
to plans81. Finally, the role of navigation support devices (for instance, 
satellite navigation devices and maps) influences both behavior and 
spatial learning82,83 (Fig. 2c).

While the role of cognitive maps is co-dependent with context and 
characteristics, many of the existing studies have been conducted in 
small-scale, controlled settings, and we lack a systematic, intersectional 
understanding of cognitive factors impacting human movement. Col-
lection of data integrating these mobility behavior with determinant 
factors is challenging at the larger scale, facing many of the same issues 
associated with other mobility studies (Box 1). Computational analyses 
of passively collected data for large populations, especially if combined 
with experimental data, may be key to pinpoint some of the cognitive 
mechanisms underlying travel in real-world settings.

Ultimately, understanding the fundamental mechanisms underly-
ing travel choices, human navigation and routing will bridge the litera-
ture streams of spatial cognition, human mobility and transportation 

engineering, and will make it possible to generate more realistic traffic 
and transit models.

Societies (cities and transportation systems)
Many global cities are striving to shift from a car-centric approach to a 
solution that integrates several modes—including walking, cycling and 
public transport84—to support urban day-to-day trips across a range of 
spatial and temporal scales (Fig. 3a). The scientific understanding of 
human mobility is key to help with this transition, because it provides 
policymakers with tools to predict future states of urban transport 
demand and assess the impact of new policies. There are critical gaps, 
however, in our understanding of multimodal urban travel.

A first important challenge concerns the limited availability of data 
capturing multimodal trips. For example, mobility patterns derived 
from travel cards describe the use of public transportation, but do 
not provide the full picture on how people travel from the origin to 
the destination of a trip85–87. In addition, most of the existing data 
originate from developed countries, and the complexity of urban trans-
portation in the Global South, where the largest and fastest-growing 
cities are found88, remains largely uncharted territory (as indicated 
in Box 1). Thus, it is still unclear how various transport modes and 
their combination meet different individual travel needs. A promising 
avenue for data collection comes from initiatives that are developing 
smartphone-based ticketing systems for connecting passengers to 
multiple operators of public and micromobility transport89–92. By 
gathering both global positioning system (GPS) and transport data 
through multiple modes, these mobile apps have the potential to drive 
novel, unprecedented understanding of mobility behavior.

Trajectory data that capture transport mode choices collected for 
large enough populations could further help quantify how individuals 
are exposed to each other while using transportation. Understanding 
these urban encounters, in turn, is critical to quantify urban segrega-
tion25,93 and to model epidemic spreading28. Since the coronavirus 
disease 2019 (COVID-19) pandemic, large GPS trajectory datasets have 
emerged as a promising approach to quantify urban encounters, with 
studies reporting an unparalleled coverage of 22% of the population 
in certain areas94. Future research shall address some of the challenges 
related to inferring contacts from mobility traces, including limits of 
the data in indoor settings, lack of data capturing encounters in public 
transportation and sampling biases (see more details in Box 1).

A second issue surrounding the study of urban mobility is the lack 
of suitable models that can holistically integrate different forms of 
transportation. In the past 20 years, novel shared transport solutions 
have become commonplace in many parts of the world. Micromobility 
(bike and scooter sharing), rides on-demand (Uber and Lyft) and vehicle 
pooling95 are fostering the shift from private transport to public ones. 
Traditional approaches have considered travel as a series of distinct 
processes, modeled at the aggregate scale96, neglecting in dependen-
cies between travel mode and route, for instance. Although newer 
approaches, such as activity-based and agent-based transport models97, 
provide more individual focus, aspects of choice, including routes 
and congestion effects, are often simplified for computational ease.

The framework of multilayer networks offers a promising and 
versatile tool for modeling multimodal infrastructure84. Multilayer 
networks are organized in layers corresponding to different transport 
modes, where in each layer, transport infrastructure (for instance, 
streets, bus and subway lines, bike lanes) constitutes the links of a 
network, and intersections (for instance, bus stops, subway stations) 
constitute the nodes (Fig. 3b). There is still a need, however, to compre-
hensively integrate the widely diverse time-dependent nature of the 
infrastructure characterizing each travel mode. Public transport obeys 
fixed schedules, implying network links in the transit layer are active 
only intermittently (see an example in Fig. 3c, top). Private modes, 
instead, can be understood as static networks where links are continu-
ously active. Shared mobility systems, such as micromobility, offer 
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different levels of flexibility, and thus lie in a broad spectrum between 
the private and public modes. For example, in station-based bike-share 
systems, transport links between any pair of stations can activate at 
any point in time, subject to the availability of vehicles at the departure 
station (Fig. 3c, bottom). In car pooling, instead, links are only active 
when rides covering specific origin–destination routes are offered, 
thus requiring more planning. Efforts to design holistic models will be 
crucial not only to design transport infrastructures but also to develop 
comprehensive route planning algorithms that consider all available 
transportation modes in a truly time-dependent network.

Finally, it is important to note that, in the future, emerging tech-
nologies such as autonomous vehicles, vehicle-to-vehicle (V2V) com-
munication and vehicle-to-infrastructure (V2I) communication will 
drive dramatic changes to urban mobility98.

Notably, the integration of V2V and V2I technologies holds great 
promise in shaping the future of human mobility. The ability to col-
lect real-time data on various aspects of the urban infrastructure, 
vehicles and human behavior offers a new window into the com-
plexities of human interaction with their urban environment. This 
information, when analyzed and applied correctly, has the potential 
to revolutionize transportation systems, through enabling better 
traffic management, more efficient navigation and improved road 
safety. There are a range of technical challenges associated with the 
collection and storage of these data, including privacy concerns, 
interoperability issues and regulatory hurdles, which are beyond 
the scope of this Perspective. In terms of computational modeling, 
real-time data collected for fleets of vehicles will create the need for 
novel approaches to mobility modeling, as it could enable to consider 
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the center line corresponds to the median value across days, the box contains 50% 
of the data and whiskers contain 90% of the data. Boxplots include 104 points, 
corresponding to the number of days considered. Street network data are from 
OpenStreetMap (planet dump retrieved from https://planet.osm.org, https://
www.openstreetmap.org). Metro data for the period between January and July 
2021 were obtained from RATP (https://transitfeeds.com/p/regie-autonome-des-
transports-parisiens/413). Vélib' data for the period between November 2020 
and March 2021 were obtained from data.gouv.fr (https://www.data.gouv.fr/en/
datasets/velib-paris-et-communes-limitrophes-idf/#resources).
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drivers’ simultaneous choices and assign vehicles to paths in real time 
in a coordinated fashion99.

In view of a massive use of the autonomous vehicles in the near 
future, coordinated traffic assignment models could help dramatically 
reduce urban congestion. In this respect, it will be critical to explore 
methods that maintain a balance between a system optimum, meaning 
an assignment that is globally efficient, and a user optimum, meaning 
an assignment that is fair for each user100.

Algorithms (computational models and AI for 
mobility modeling)
Motivated by human-like performance achieved in many challeng-
ing tasks in computer vision, natural language processing, medical 
diagnosis and zero-sum games101–106, researchers started to use deep 
learning to improve solutions to fundamental mobility tasks, such as 
trajectory prediction and generation, and flow prediction and genera-
tion18. Mobility predictors and generators should capture at the same 
time the spatial, temporal, social and geographic regularities that are 
hidden in human whereabouts, the impact of external factors, and 
preferences on the decision to move. In this regard, the use of AI in 
human mobility brings several advantages over traditional approaches.

Although numerous solutions to mobility tasks have been pro-
posed before the AI explosion15,16,107, they typically use probabilistic or 
time-series-based approaches that can only partially capture human 
mobility dimensions. In particular, these traditional approaches strug-
gle to capture complex sequential patterns in the data. AI approaches 
overtake these issues by using mechanisms such as recurrent neural 
networks (RNNs)108 and convolutional neural networks (CNNs)105. 
Moreover, AI approaches can effectively capture the influence of exter-
nal factors, such as weather conditions and public events in the city, 
which can be efficiently handled with fully connected networks102 and 
combined with the output of CNNs or RNNs.

Although there is a vast literature on generative models that 
reproduce simple temporal, spatial or social patterns of human 
mobility3,4,7,10,14,19,40,42,48,49,84,109–112, the effectiveness of these models is 
limited because of the simplicity of the implemented mechanisms. 
Most mechanistic generators assume that an individual relies on a 
simple, dichotomous decision (typically, either returning to known 
locations or exploring new ones40,42) or obeys specific laws governing 
human displacements (for instance, the gravity law, the radiation law 
and their subsequent extensions4,20,49,111). Recent advancements in 
AI, such as generative adversarial networks (GANs)113 and variational 
autoencoders (VAEs)114 rely on deep learning modules to learn the 
distribution of data and generate trajectories or flows coming from 
the same distributions18,115–119. GANs and VAEs are versatile and can 
capture different aspects simultaneously (spatial, temporal and social 
dimensions) and nonlinear relationships in the data that traditional 
approaches may fail to capture.

Researchers have now been investigating the application of trans-
former networks120 for generating, predicting and completing indi-
vidual trajectories. Notable examples of such models include GPT-3, 
a generative pre-trained transformer model, and BERT, a bidirectional 
encoder representation from transformers, which are attention-based 
neural network models. As the impressive capacity of chatGPT (https://
openai.com/blog/chatgpt/) shows, these networks have demonstrated 
superior performance compared with RNNs in the area of language 
modeling, leading to the hypothesis that they may also be more effec-
tive in modeling human mobility. Recent studies provide empirical sup-
port for this hypothesis18,27,121,122, but the full potential of these language 
models is a promising research question that remains to be explored.

However, not all that glitters is gold. AI models (particularly those 
based on deep learning) are opaque123, meaning that they are de facto 
black boxes from which it is hard to reconstruct the reasoning that led 
to a prediction or the generation of a trajectory or flow. For example, 
while mobility AI models rely on many features, either spatiotemporal 

or external ones (for instance, weather data, points of interests), it is 
not explicit what the role of each feature is to the model’s outcome. 
When an algorithm learns patterns from data, without human input, 
explainability is crucial to provide openness and transparency. Lack of 
explainability may result in erosion of trust from users or ethical issues 
as resulting predictions may perpetuate the biases characterizing the 
empirical data (Box 1). Recent studies20,124 have shown how a better 
interpretability can be gained by adapting explainable AI techniques 
developed for tabular and image data to study mobility data. However, 
these approaches have been also criticized as they can yield mislead-
ing information about the relative importance of features for predic-
tions125,126. Therefore, it is finally time to develop explanations that 
are specifically tailored for human mobility, providing examples and 
counterexamples to validate trajectories and flows from different per-
spectives18,127. Designing transparent AI mobility models or explainable 
mobility AI techniques is essential to gain knowledge that can be useful 
for potential users, such as policymakers and urban planners (Fig. 4a).

A promising direction is to combine the strengths of AI models 
with those of mechanistic models, such as the exploration and pref-
erential return (EPR) model and its improvements19,42,109, which aim 
to replicate the underlying processes that govern human mobility. 
Mechanistic models are interpretable by design but can capture only 
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Fig. 4 | Human mobility, AI and the urban environment. a, A schematic 
example of how explainable AI tools can improve a deep learning solution to a 
common problem in human mobility, such as flow generation. The explanation 
provided by the tool may indicate the importance of variables that characterize 
the flow’s locations, for example, through a Shap-like explanation plot159. In the 
Shap plot, each point represents a flow, the position on the x axis is the Shap value 
(capturing how much a single feature affected the prediction), and the color 
indicates the feature value. The features considered in this example are: distance 
between source and target locations, land use of the target location (natural 
or commercial), population of the target location, and the number of health 
points of interest (POIs) at the target location. Tailored explanations for human 
mobility are needed, and future efforts in mobility science will require defining 
explanations that are specifically designed for human mobility. b, An example of 
how three different navigation services (NS1, NS2 and NS3) may suggest different 
routes to vehicles with the same origin–destination pair, each path having a 
different impact on the urban environment in terms of externalities such as CO2 
emissions. Understanding the collective impact of these services and designing 
next-generation navigation services that can mitigate their impact while meeting 
user needs will be a future challenge in human mobility science.
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a limited number of mobility dimensions due to their simple mecha-
nisms. Despite this, these models have a high degree of geographic 
transferability18 and can be used to predict locations and flows in dif-
ferent regions. In contrast, AI models can capture many dimensions but 
need more interpretability and are highly dependent on the data used 
for training, which can limit their geographic transferability. The poten-
tial of combining these two approaches into a hybrid model is yet to be 
fully explored and can lead to discoveries in human mobility patterns.

Impact of algorithms on human mobility
There is an increasing effort by researchers in using digital data sources 
to study the impact of AI mobility apps, such as new public mobility 
services (for instance, car-sharing, bike-sharing, ride-hailing, and prod-
uct and food delivery) and GPS navigation apps (for instance, Google 
Maps and TomTom) on several dimensions of urban welfare such as 
safety, air pollution and spatial segregation128–130.

Although new public mobility services promise to increase the 
accessibility of goods and areas, their collective impact on the urban 
environment is largely unclear. The mobility task that allows these 
services to work is service demand prediction, which aims to forecast 
(using AI) future user demand of public mobility services131–133. Com-
panies such as Uber, Lyft and Amazon provide these services every day 
all around the world as technology-based, on-demand and affordable 
alternatives to traditional means. For example, people in neighbor-
hoods where large retailers do not reach may exploit Amazon’s same-
day delivery service to avoid traveling further and paying more to 
obtain household necessities. Similarly, people without a private car 
may exploit ride-hailing services such as Uber and Lyft to reach areas 
that are not covered by public transportation as an alternative to taxi 
companies. Preliminary studies show that, indeed, ride-hailing services 
may help improve urban mobility, but they may also increase road traf-
fic, take people off public transport and generate more pollution134.

Moreover, these services may generate segregation because they 
are based on predictions that discriminate against minorities131–133: 
the models may overfit to strong biases in the source data related to 
socioeconomic conditions and demographics (see more details in  
Box 1). For example, low ridership in poor neighborhoods is not neces-
sarily (or even typically) an indication of low demand135. In general, exist-
ing studies are sporadic (due to the algorithms often being regarded as 
trade secret and algorithmic systems being difficult to audit) and yield 
inconclusive or contradictory results. Further investigation is needed 
to shed light on these aspects.

In recent years, there has been a widespread diffusion of GPS 
navigation apps such as TomTom, Google Maps and Waze, which use 
routing algorithms, heuristics and AI to suggest the best path to reach 
a user’s desired destination. Although undoubtedly useful, particularly 
when exploring an unfamiliar city, navigation apps may also have an 
adverse impact on the urban environment (Fig. 4c).

Studies on eco-routing have produced mixed results: green naviga-
tion apps can reduce CO2 emissions136 but increase exposure to nitrogen 
oxides137, and the fastest route suggested by navigation apps may not 
always optimize fuel consumption138. The most recent research139 shows 
that as more vehicles in a city follow the route suggestions of navigation 
apps, the amount of CO2 emissions in the urban environment increases. 
These studies, although still in their early stages, highlight the need for 
further research on the impact of AI recommendations on route choices 
and their effects on the urban space and welfare. By understanding the 
interplay between these factors, it may be possible to develop routing 
algorithms that optimize both fuel efficiency and sustainability while 
minimizing negative impacts for the environment and society.

Further considerations
Recent computational advances have enabled substantial progress 
in the field, and we anticipate that ongoing research will continue 
to evolve in tandem with advances in computing. Advancements in 

data collection methods, such as wearable sensors, smartphones and 
connected vehicles, could shed light on poorly understood aspects 
of mobility. In addition, emerging techniques for data storage and 
analysis, such as distributed databases and federated learning, could be 
instrumental in fusing large amounts of data while maintaining privacy 
and data quality. Finally, the integration of novel analytical tools and 
modeling techniques, such as the merging of mechanistic and black-
box mobility models, can help uncover new aspects of behavior. These 
insights could play a crucial role in shaping our society in the years to 
come. By making progress on the research directions outlined in this 
Perspective, we may help address some of the most pressing challenges 
that our society faces today, including public health crises, climate 
change and socioeconomic inequalities.

Facing public health crises
Mobility profoundly impacts public health, and mobility data can play 
a crucial role for understanding the spatial policies that affect it. The 
COVID-19 pandemic has emphasized this relationship, as many coun-
tries have implemented non-pharmaceutical interventions (NPIs) such 
as lockdowns, stay-at-home orders and travel restrictions to control the 
spread of the virus29,140–148. However, traditional NPIs such as indiscrimi-
nate closure of public and commercial activities may not be the most 
effective approach. Instead, an AI model that incorporates diverse data, 
such as health, demographics, income, mobility and spatial features, 
could identify more targeted and effective health policies and NPIs. 
For instance, if movements to a place are predominantly driven by a 
specific point of interest, such as a university, limiting access to that 
location could control the spread of the virus. An AI model could even 
predict how incoming mobility would change if access to that point was 
restricted, and give insights into potential outcomes.

Mitigating climate change
The relationship between human mobility and its impact on the envi-
ronment is complex and multifaceted. As approximately 11.9% of 
greenhouse gas emissions are from road transport, with 60% of these 
emissions resulting from passenger travel, the United Nations has called 
for action to reduce the negative environmental impact of cities, with 
a particular focus on air quality149,150.

One open question in this regard is how to effectively exploit 
known mobility patterns to define and implement effective policies 
for reducing emissions. Studies have shown that a small subset of 
vehicles, referred to as gross polluters, emit significantly more pol-
lutants compared with other vehicles151,152. Encouraging these gross 
polluters to adopt more sustainable forms of mobility, such as electric 
vehicles or remote work, is a more effective way to reduce CO2 emis-
sions compared with targeting vehicles randomly151. These findings are 
promising; however, the relationship between mobility patterns and 
emissions and sustainability has only been explored on the surface.

Another avenue for further investigation is the development 
of next-generation routing strategies that consider the collective 
environmental impact of route choices. The proliferation of mobile 
navigation apps has further complicated the relationship between 
mobility and emissions, as the environmental impact of the routes sug-
gested to users can vary considerably from one app to another136,139,153. 
Designing routing algorithms that reduce the overall environmental 
impact requires a deeper understanding of human mobility, particu-
larly cognitive factors, to encourage people to follow routes that may 
be less optimal at the individual level but that collectively help mitigate 
environmental impact. The relationship between multimodality and 
the environmental impact of mobility, and the potential role of AI in this 
relationship, remains an area of ongoing research and investigation.

Reducing inequalities
Achieving sustainable cities that promote social cohesion and where 
all individuals have equitable access to resources is one of the priorities 
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set by the United Nations sustainable development goals154. Global 
cities, however, still face deep social inequalities and segregation with 
respect to aspects such as income, education and health155. The research 
directions highlighted in this Perspective could help address this gap, 
by providing understanding of inequality and segregation driven by 
mobility patterns. Segregation and unequal access to opportunities, 
for example, can be direct consequences of inequitable transport and 
accessibility. Car-centric cities, in fact, favor residential segregation156, 
and poor accessibility to jobs for low-income groups discourages resi-
dential moves, thus perpetuating segregation157. Multimodal transpor-
tation promises to help reduce inequalities by offering a range options 
for getting to locations that are out of reach without a car158 and encour-
aging social mixing. The actual effect played by multimodal transporta-
tion towards reducing social mixing and inequalities, however, has not 
been entirely understood, and studies that leverage real-world data and 
computational models will be key to fill this gap. The field of human 
mobility science can drive novel understanding of social segregation 
and inequalities and help develop novel solutions to mitigate it by 
planning for sustainable and inclusive infrastructure.
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