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A universal model for mobility and migration
patterns
Filippo Simini1,2,3, Marta C. González4, Amos Maritan2 & Albert-László Barabási1,5,6

Introduced in its contemporary form in 1946 (ref. 1), but with roots
that go back to the eighteenth century2, the gravity law1,3,4 is the pre-
vailing framework with which to predict population movement3,5,6,
cargo shippingvolume7 and inter-cityphonecalls8,9, aswell asbilateral
trade flows between nations10. Despite its widespread use, it relies on
adjustable parameters that vary from region to region and suffers
from known analytic inconsistencies. Here we introduce a stochastic
process capturing local mobility decisions that helps us analytically
derive commuting and mobility fluxes that require as input only
information on the population distribution. The resulting radiation
model predicts mobility patterns in good agreement with mobility
and transport patterns observed in a wide range of phenomena, from
long-term migration patterns to communication volume between
different regions. Given its parameter-free nature, the model can be
applied in areas where we lack previous mobility measurements,
significantly improving the predictive accuracy of most of the
phenomena affected by mobility and transport processes11–23.
In analogy with Newton’s law of gravity, the gravity law assumes

that the number of individuals Tij that move between locations i and j
per unit time is proportional to some power of the population of the
source (mi) and destination (nj) locations, and decays with the distance
rij between them as

Tij~
ma

i n
b
j

f (rij)
ð1Þ

where a and b are adjustable exponents and the deterrence function
f(rij) is chosen to fit the empirical data.OccasionallyTij is interpreted as
the probability rate of individuals travelling from i to j, or an effective
coupling between the two locations24. Despite its widespread use, the
gravity law has notable limitations:
Limitation one, we lack a rigorous derivation of (1). Whereas

entropy maximization25 leads to (1) with a5b5 1, it fails to offer
the functional form of f(r).
Limitation two, lacking theoretical guidance, practitioners use a

range of deterrence functions (power law or exponential) and up to
nine parameters to fit the empirical data5,7,8,11,14.
Limitation three, as (1) requires previous traffic data to fit the para-

meters [a, b, …], it is unable to predict mobility in regions where we
lack systematic traffic data, areas of major interest in modelling of
infectious diseases.
Limitation four, the gravity law has systematic predictive discrep-

ancies. Indeed, in Fig. 1awe highlight two pairs of counties with similar
origin and destination populations and comparable distance, so
according to (1) the flux between them should be the same. Yet, the
US census (see Supplementary Information) documents an order of
magnitude difference between the two fluxes: only 6 individuals
commute between the two Alabama counties, whereas 44 do in Utah.
Limitation five, equation (1) predicts that the number of commuters

increaseswithout limit as we increase the destination population nj, yet
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Figure 1 | The radiation model. a, To demonstrate the limitations of the
gravity law we highlight two pairs of counties, one in Utah (UT) and the other
in Alabama (AL), with similar origin (m, blue) and destination (n, green)
populations and comparable distance r between them (see bottom left table).
The gravity law predictions were obtained by fitting equation (1) to the full
commuting data set, recovering the parameters [a, b, c]5 [0.30, 0.64, 3.05] for
r, 119 km, and [0.24, 0.14, 0.29] for r. 119 kmof ref. 14. The fluxes predicted
by (1) are the same because the two county pairs have similar m, n and r (top
right table). Yet the US census 2000 reports a flux that is an order of magnitude
greater between the Utah counties, a difference correctly captured by the
radiation model (b, c). b, The definition of the radiation model: an individual
(for example, living in Saratoga County, New York) applies for jobs in all
counties and collects potential employment offers. The number of job
opportunities in each county (j) is nj/njobs, chosen to be proportional to the
resident population nj. Each offer’s attractiveness (benefit) is represented by a
random variable with distribution p(z), the numbers placed in each county
representing the best offer among the nj/njobs trials in that area. Each county is
marked in green (red) if its best offer is better (lower) than the best offer in the
home county (here z5 10). c, An individual accepts the closest job that offers
better benefits than his home county. In the shown configuration the individual
will commute to Oneida County, New York, the closest county whose benefit
z5 13 exceeds the home county benefit z5 10. This process is repeated for
each potential commuter, choosing new benefit variables z in each case.
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the number of commuters cannot exceed the source population mi,
highlighting the gravity law’s analytical inconsistency (see Supplemen-
tary Information, Section 4).
Limitation six, being deterministic, the gravity law cannot account

for fluctuations in the number of travellers between two locations.
Motivated by these known limitations, alternative approaches like

the interveningopportunitymodel26 or the randomutilitymodel27 (Sup-
plementary Information, Section 7) have been proposed. Although
derived from first principles, these models continue to contain
context-specific tunable parameters, and their predictive power is at
best comparable to the gravity law28.
Here we introduce a modelling framework that relies on first

principles and overcomes the problems of limitations one to six of
the gravity law. Whereas commuting is a daily process, its source and
destination is determined by job selection, a decisionmade over longer
timescales. Using the natural partition of a country into counties (for
which commuting data are collected), we assume that job selection
consists of two steps (Fig. 1 b, c).
Step one, an individual seeks job offers from all counties, including

his/her home county. The number of employment opportunities in
each county is proportional to the resident population, n, assuming
that there is one job opening for every njobs individuals.We capture the
benefits of a potential employment opportunity with a single number,
z, randomly chosen from distribution p(z) where z represents a com-
bination of income, working hours, conditions, etc. Thus, each county
with population n is assigned n/njobs random numbers, z1, z2, …,
z½n=njobs�, accounting for the fact that the larger a county’s population,
the more employment opportunities it offers.
Step two, the individual chooses the closest job to his/her home,

whose benefits z are higher than the best offer available in his/her home
county. Thus lack of commuting has priority over the benefits, that is,
individuals are willing to accept lesser jobs closer to their home.
This process, applied in proportion to the resident population in

each county, assignswork locations to eachpotential commuter,which
in turn determines the daily commuting fluxes across the country. The
model has three unknownparameters: the benefit distribution p(z), the
job density njobs, and the total number of commuters, Nc. We show,
however, that the commuting fluxes Tij are independent of p(z) and
njobs, and the remaining free parameter, Nc, does not affect the flux
distribution, making the model parameter-free. As the model can be
formulated in terms of radiation and absorption processes (see
Supplementary Information, Section 2), we will refer to it as the radi-
ationmodel. To analytically predict the commuting fluxes we consider
locations i and j with populationmi and nj respectively, at distance rij
from each other, and we denote with sij the total population in the
circle of radius rij centred at i (excluding the source and destination
population). The average flux Tij from i to j, as predicted by the radi-
ation model (see Supplementary Information, Section 2), is

Tij
� �

~Ti
minj

(mizsij)(miznjzsij)
ð2Þ

which is independent of both p(z) and njobs. Hence (2) represents the
fundamental equation of the radiationmodel, the proposed alternative
to the gravity law (1).HereTi:

P
j=i

Tij is the total number of commuters

that start their journey from location i, which is proportional to the
population of the source location, hence Ti5mi(Nc/N), whereNc is the
total number of commuters andN is the total population in the country
(Fig. 2g).
Equation (2) resolves limitations one to six of the gravity law: it has a

rigorous derivation (resolving limitation one) and has no free para-
meters (bypassing limitations two and three). To understand the origin
of limitation four, we note that a key difference between the radiation
model (2) and the gravity law (1) is that the variable of (2) is not the
distance rij, but sij. Thus the commuting flux depends not only on mi

and nj but also on the population sij of the region surrounding the

source location. For uniform population density sij<mir2ij and n5m,
(2) reduces to the gravity law (1) with f(r)5 rc, c5 4 and a1b5 1.
The non-uniform population density, however, is key to resolving the
problemof limitation four: equation (2) predicts anorder ofmagnitude
difference in Alabama and Utah, in line with the census data (see
Fig. 1a). Indeed the population density around Utah is significantly
lower than the United States average, thus work opportunities within
the same radius are ten times smaller in Utah than in Alabama, imply-
ing that commuters in Utah have to travel farther to find comparable
employment opportunities. Note also that equation (2) predicts that
the number of travellers leaving from a location with populationm to
one with n?? saturates at Tn??~ m2

(mzs)zO 1
n

� �
ƒm, resolving the

unphysical divergence highlighted in limitation five. Finally, Tij in the
radiationmodel is a stochastic variable, predicting not only the average
flux between two locations (2), but also its variance (see Supplementary
Information, Section 2), resolving the problem of limitation six.
To explore the radiation model’s ability to predict the correct

commuting patterns, in Fig. 2a we show the commuting fluxes with
more than ten travellers originating from New York County. The
destinations predicted by the gravity law14 are all within 400 km from
the origin, missing all long distance and many medium distance trips.
The gravity law’s local performance is equally poor: within the State of
New York it grossly overestimates fluxes in the vicinity of New York
City and underestimates the fluxes in the rest of the state (Fig. 2a, right
column). The radiationmodel offers amore realistic approximation to
the observed commuting patterns, both nationally and state-wide
(Fig. 2a, bottom panels). To quantify the observed differences, we
compare the measured and the predicted non-zero commuting fluxes
for all pairs of counties in theUnited States.We find that both standard
implementations of the gravity law11,14 (f(r)5 rc and f(r)5 edr, where d
is a fitting parameterwith theunit of an inverse lengthneeded to ensure
a dimensionless argument to the exponential function) significantly
underestimate the high flux commuting patterns, often by an order of
magnitude ormore (Fig. 2b, c). In contrast, the average fluxes predicted
by the radiation model are within the error bars despite the observed
six orders of magnitude span in commuting fluxes (Fig. 2d).
The systematic failure of the gravity law is particularly evident if we

measure the probability Pdist(r) of a trip between locations at distance r
(Fig. 2e), and the probability of trips towards a destination with popu-
lation n, Pdest(n) (Fig. 2f). For Pdist(r) the radiation model clearly
follows the peak around 40 km in the census data. The prediction
based on the gravity law lacks this peak and thus it overestimates by
three orders of magnitude the number of short distance trips.
Similarly, the gravity law overestimates the low n values of Pdest(n)
by nearly an order of magnitude.
Another important mobility measure is the conditional probability

p(T jm,n,r) to observe a flux of T individuals from a location with
population m to a location with population n at a distance r. The
gravity law predicts a highly peaked p(T jm,n,r) distribution around
the average Th imnr~

X
T
p(Tjm,n,r)T (Fig. 2h–j), because, accord-

ing to (1) pairs of locations with the same (m, n, r) have the same flux.
In contrast the radiation model predicts a broad p(T jm,n,r) distri-
bution, in reasonable agreement with the data.
To show the generality of themodel in Fig. 3 we test its performance

for four socio-economic phenomena: hourly travel patterns, migra-
tions, communication patterns and commodity flows.We find that the
radiation model offers an accurate quantitative description of mobility
and transport spanning a wide range of time scales (hourly mobility,
daily commuting, yearly migrations), capturing diverse processes
(commuting, intra-day mobility, call patterns, trade), collected via a
wide range of tools (census, mobile phones, tax documents) on differ-
ent continents (America, Europe). The agreement with data of such
diverse nature is somewhat surprising, suggesting that the hypotheses
behind the model capture fundamental decision mechanisms that,
directly or indirectly, are relevant to a wide span of mobility and
transport-driven processes.
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Figure 2 | Comparing the predictions of the
radiation model and the gravity law. a, National
mobility fluxes with more than ten travellers
originating from New York County (left panels)
and the high intensity fluxes (over 1,100 travellers)
within the state of NewYork (right panels). Arrows
represent commuters fluxes, the colour capturing
flux intensity: black, 10 individuals (fluxes below
ten travellers are not shown for clarity), white,
.10,000 individuals. The top panels display the
fluxes reported in US census 2000, the central
panels display the fluxes fitted by the gravity law
with14 f(r)5 rc, and the bottom panels display the
fluxes predicted by the radiation model.
b–d, Comparing the measured flux, Tdata

ij , with the
predicted flux, TGM

ij and TRad
ij , for each pair of

counties. We compare the census data with two
formulations of the gravity law, f(r)5 edr (c) and
f(r)5 rc (b), andwith the radiationmodel (d). Grey
points are scatter plot for each pair of counties. A
box is coloured green if the line y5 x lies between
the 9th and the 91st percentiles in that bin and is
red otherwise. The black circles correspond to the
mean number of predicted travellers in that bin.
e, Probability of a trip between two counties that
are at distance r (in km) from each other, Pdist(r).
f, Probability of a trip towards a county with
population n, Pdest(n). g, The number of
commuters in a county, Ti, is proportional to its
population, mi. h–j, Conditional probability
p(T | m,n,r) to observe a flow of T individuals from
a location with population m to a location with
population n at a distance r for three triplets
(m,n,r). The gravity law predicts a highly peaked
distribution around the average value Th imnr , in
disagreement with census data and the radiation
model, which both show a broad distribution.
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To illustrate the effect of the heterogeneous population distribution
on commuting fluxes, in Supplementary Fig. 8a–f we show the
commuting landscape generated by (2) from the perspective of two
individuals, one in Davis county, Utah, and the other in Clayton
County, Georgia, with comparable populations of 238,994 and
236,517, respectively. If the population was uniformly distributed,
the landscape seen by a potential employee would be simple: the
farther is a job, the less desirable it is (Supplementary Fig. 8a, d).
Yet, the observed variations in population density significantly alter
the local commuting landscape, as shown in Supplementary Fig. 8b, e
where we coloured the US counties based on their distance to the
commuter’s home county (Supplementary Fig. 8a, d) and then moved

them closer or further from the origin so that the new distance reflects
the true likelihood of representing a commuting destination.
Despite the observed differences in the perspective of individual

commuters, the radiation model helps us uncover a previously unsus-
pected scale-invariance in commuting patterns. Indeed, according to
(2), the probability of one trip from i to j (equal to Tij/Ti) is scale
invariant under the transformation mi?lmi, nj?lnj and sij?lsij.
Empirical evidence for this statistical self-similarity is offered in
Fig. 4a, b (see also Supplementary Information, Section 8).
In summary, the superior performance of the radiation model can

significantly improve the accuracy of predictive tools in all areas affected
by mobility and transport processes11,12, from epidemiology13 and
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Figure 3 | Beyond commuting. a–c, Testing the radiation model on hourly
trips extracted from a mobile phone database of a western European country.
The anonymized billing records29,30 cover the activity of approximately ten
million subscribers. We analysed a 6-month period, recording the user
locations with tower resolution hourly between 7am and 10pm, identifying all
trips betweenmunicipalities. a, Probability of a trip between twomunicipalities
at distance r, Pdist(r), shown for 14-hourly time intervals. Radiation model
predictions are solid lines; gravity law’s aggregated fit over 24 h is a red line with
empty squares. b, Probability of a trip towards a municipality with population
n, Pdest(n). c, Comparing themeasured flux,Tdata

ij , with the predicted flux,TRad
ij ,

for each pair of municipalities with Tdata
ij ,TRad

ij w0, for commuting trips
extracted by identifying each user’s home and workplace from the locations

where the user made the most calls. d–f, Testing (2) on long-term migration
patterns, capturing the number of individuals that relocated from one US
county to another during tax years 2007–2008 as reported by the US Internal
Revenue Service. g–i, Phone call volume betweenmunicipalities extracted from
the anonymized mobile phone database. The number of phone calls between
users living in different municipalities during a period of 4weeks resulted in
38,649,153 calls placed by 4,336,217 users.We aggregated the data to obtain the
total number of calls between every pair of municipalities. j–l, Commodity
flows in the US extracted from the Freight Analysis Framework (FAF), which
offers a comprehensive picture of freight movement among US states and
major metropolitan areas by all modes of transportation. For each data set we
measured the quantities discussed in a–c.
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spreading processes17 to urban geography18–21 and flow of resources in
economics22. The parameter-free modelling platform we introduced
can predict commuting and transport patterns even in areas where
such data are not collected systematically, as it relies only on popu-
lation densities, which is relatively accurately estimated throughout
the globe.
Despite its superior performance the radiation model can absorb

further improvements. For example, consider the fact that an individual
has a home-field advantage when searching for jobs in the home
county, being more familiar with local employment opportunities.
We can incorporate this by adding e/njobs additional employment
opportunities to his/her home county, achieved through an effective
increasem?mze of the home county population, so the adjusted law
is now invariant under the (mze)?l(mze) and s?ls transforma-
tion.We find that the rescaling of the commuting probability improves
dramatically (Fig. 4c), indicating that the home field advantage offers
an effective boost in employment opportunities that is equivalent with
an additional e5 35,000 individuals in the home county population.
Furthermore, the adjusted radiation model shows a better or equally
good agreement with the real data in all tested measures (Sup-
plementary Fig. 6), demonstrating that equation (2) is not a rigid
end point of our approach, but offers a platform that can be improved
upon in specific environments.
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2. Monge, G.Mémoire sur la Théorie des Déblais et de Remblais. Histoire de l’Académie
Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique
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Figure 4 | Unveiling the hidden self-similarity in human mobility. a, The
probability ps(. s | m) to observe a trip from a location with populationm to a
destination in the region beyond a population s from the origin (m varies
between 200 and 2,000,000). b, According to the radiation model

ps(. s | m)5 1/(11 s/m), a homogeneous function of the ratio s/m. Plotting
ps(. s | m) versus s/m, the curves approach the theoretical result y5 1/(11 x).
c, The collapse improves ifwe account for the home field advantage in job search
by always adding e5 35,000 to the population of the commuter’s home county.
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