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Abstract
This paper is a methodological guide to using machine learning in the spatial con-
text. It provides an overview of the existing spatial toolbox proposed in the litera-
ture: unsupervised learning, which deals with clustering of spatial data, and super-
vised learning, which displaces classical spatial econometrics. It shows the potential 
of using this developing methodology, as well as its pitfalls. It catalogues and com-
ments on the usage of spatial clustering methods (for locations and values, both sep-
arately and jointly) for mapping, bootstrapping, cross-validation, GWR modelling 
and density indicators. It provides details of spatial machine learning models, which 
are combined with spatial data integration, modelling, model fine-tuning and predic-
tions to deal with spatial autocorrelation and big data. The paper delineates “already 
available” and “forthcoming” methods and gives inspiration for transplanting mod-
ern quantitative methods from other thematic areas to research in regional science.

JEL Classification  C31 · R10 · C49

1  Introduction

Since its growth on the 1980s, machine learning (ML) has attracted the attention of 
many disciplines which are based on quantitative methods. Machine learning uses 
automated algorithms to discover patterns from data and enable high-quality fore-
casts, although the relationships between input data have not been widely studied. 
This is contrary to classic statistics and econometrics, which are designed to use 
formal equations, make inferences and test hypotheses to conclude on population 
having a sample, while forecasts are of secondary importance. ML often works sim-
ilar to a black-box testing approach, not as an explicitly defined, commonly used 
statistical and econometric model. ML has three primary purposes: clustering of 
data into unknown a priori groups, classification of data into known groups based 
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on a trained model and prediction. According to Google Ngrams, its current appli-
cations are found approximately ten times more frequently in text than those of 
econometrics, but still around seven times less frequently than those of statistics. In 
many research areas (such as epidemiology, geology, ecology and climate), it has 
become a standard, but this is yet to occur in the field of regional science. Spatial 
methods need spatial data. Recent assessment has found that around 80% of all data 
can have a geographic dimension, and much of these data can be geo-referenced 
(VoPham et al. 2018). Spatial information can stem from conventional sources such 
as regional databases in statistical offices, grid datasets and geo-located points. One 
can also easily gather data from Open Street Map and Google Maps (in the form of 
background maps, points of interest (POI), roads and traffic, for example), as well as 
from geo-referenced images (such as satellite photographs (Rolf et al. 2021), night 
light photographs and drone photographs), geo-tagged social media posts on Twitter 
and climate sensors. This type of data requires powerful computational methods due 
to its complexity, diversity and volume.

Machine learning (ML) is the ability of a machine to improve its performance 
based on previous results. It is a part of artificial intelligence and can be divided into 
unsupervised learning, supervised learning and semi-supervised learning, depend-
ing on the algorithms used. Deep learning, being a subfield of machine learning, 
uses neural networks for training the models. Big data is linked to data mining 
and knowledge discovery on large datasets by using machine learning techniques.1 
Machine learning algorithms can be implemented on ready-to-use data to obtain 
simple, self-standing machine learning forecast or used with workflow and data pro-
cessing or even apply it to artificial intelligence, where decisions are made by algo-
rithms.2 The hermetic nature of the scientific communities may give the impression 
that ML methods are largely inaccessible to a wider audience. However, ML has a 
great potential in non-big data analysis in terms of its methods being used as sup-
plements to spatial statistics and econometrics. The goal of this paper is to present a 
methodological overview of machine learning in the spatial context. Firstly, it out-
lines the nature of the information ML gives us, and concludes if ML is substitu-
tive or complementary to the traditional methods. Secondly, it presents two ways in 
which ML has been incorporated into spatial studies—by using typical ML on spa-
tial data and by developing new ML methods dedicated to spatial data only. Thirdly, 
it aims to promote the application of ML to regional science. The paper concen-
trates solely on the following selected ML methods: unsupervised learning, which is 
closer to traditional statistics and encompasses clustering, and supervised learning, 
which is closer to econometrics and encompasses classification and regression.3 A 

1  Artificial intelligence (AI) is often defined as a “moving target” with regards to technological chal-
lenges; its main feature is to make decisions. AI wider definition is about performing tasks commonly 
associated with intelligent beings, such as reasoning, discovering meaning, generalizing, or learning from 
past experience. Early examples of AI include computers playing chess; current example would be an 
autonomous car.
2  The popularity of Artificial Intelligence (AI) results in its overuse; e.g. VoPham et al. (2018) named 
a standard predictive model of environmental exposure (for PM2.5 air pollution) geospatial AI (geoAI).
3  In review of ML in the spatial context, Du et al. (2020) limit machine learning to regression models 
only, which is not true, and they fail to mention clustering tasks.
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general overview of these methods is presented in “Appendix 1” and their R imple-
mentation in “Appendix 3”.

2 � Statistical applications of machine learning in regional science

Unsupervised learning is the collection of machine learning methods that are equiv-
alent to statistics. Like data mining, it does not study relationships or causality, but 
instead looks for unknown but meaningful data patterns. Unsupervised learning 
covers mainly clustering, dimension reduction and association rules. In spatial data 
analysis, of course, the core area of interest is geographical location. The methodo-
logical question is how to address this unique attribute of spatial data. The separa-
tion between observations is measured with distance. It can be an intuitive, shortest 
(Euclidean) distance from one point to another point on the plane but can also be 
a multi-dimensional distance between quantitative and qualitative variables. This 
is why machine learning, in addition to Euclidean distance, also uses Manhattan, 
Minkowski, Gower, Mahalanobis, Hamming, cophenetic and cosine distances (see 
“Appendix 1”).

One should remember that the remarkable progress observed in recent years 
related to ML has caused the methodological standards to change—new develop-
ments have replaced previous innovations, and some solutions have transpired to be 
a dead end. The discussion below presents an overview of these diverse methods, 
including their development trajectories and their usefulness in spatial analysis.4

2.1 � Clustering of points in space

Geo-located points, independently of having features assigned, are characterised 
by the longitude and latitude (x, y) projected coordinates. Based on this informa-
tion, one can group observations into spatial clusters, which will be spatially con-
tinuous and covering all analysed points. In the case of a small- or medium-sized 
sample n, one can use the k-means algorithm, mostly with Euclidean distance 
metrics. It works well for limited values of n, as it requires the computation of 
resource-consuming n × n mutual distance matrix and solves the problem as an 
optimisation model.5 Centroids of k-means clusters are artificial points (potentially 
not existing in a sample), located in order to minimise distances between points 
within a cluster. With larger datasets, one applies the CLARA (clustering large 
applications) algorithm, which is the big data equivalent of PAM (partitioning 
around medoids). Both methods also apply distance metrics (such as Euclidean) 
but work iteratively in search of the best real representative point (medoid) for 
each cluster. In CLARA, the restrictive issue of the n × n distance matrix is solved 
by sample shrinking when sampling; PAM suffers from the same limitations as 

4  Increasingly one can find in the literature comparisons of different spatial clustering methods, e.g. 
Jégou et al. (2019) in an empirical example, and Yuan et al. (2020) in looking for outliers.
5  The nxn distance matrix can be simplified using the Fastmap and modified Fastmap algorithm.
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the k-means algorithm in this regard. Quality of clustering is typically tested with 
silhouette or gap statistics (see “Appendix 1”). This mechanism can be applied to 
delineating catchment areas (e.g. for schools, post offices and supermarkets) or to 
divide the market for sales representatives—in both instances, the challenge is to 
organise individual points around centres, with possible consideration of capacity 
and/or fixed location of the centre. Aside from statistical grouping, clustering has 
huge potential for forecasting. A calibrated clustering model enables the automatic 
assignment of new points to established clusters. The prediction mechanism works 
on the basis of the k-nearest neighbours algorithm.

In a portfolio of clustering methods based on a dissimilarity matrix (being equiv-
alent to a matrix of distances between points), one can assign hierarchical grouping. 
For n observations, the results are presented in a dendrogram, showing continuous 
division from 1 to n clusters. It is based on the k-nearest neighbours (knn) concept 
and can be applied to clustering points or values. The hierarchical clustering algo-
rithm works iteratively, starting from the state in which each observation is its own 
cluster. In the next steps, the two most similar clusters are combined into one until 
point is reached when a single cluster is created. The final result is the assignment of 
points to clusters, as is also the case with k-means, PAM and CLARA.

Clustering with the k-means algorithm has the significant advantages of ease of 
interpretation, a high degree of flexibility and computational efficiency; however, 
its main disadvantage lies in the need to specify a priori the number of k clusters. 
If it does not result from analytical assumptions (e.g. known number of schools to 
define catchment areas), it can be optimised by checking partitioning quality meas-
ures for different k values, or it can follow density. Brimicombe (2007) proposed a 
dual approach to cluster discovery, which is to find density clusters (“hot spots”) 
using, for example, GAM or kernel density and use these as initial points in k-means 
clustering. This automates the selection of k and speeds up the computations by set-
ting starting centroids.

In other applications, k-means helps to build irregular, non-overlapping spatial 
clusters so that spatially stratified sampling can be run from those clusters (e.g. 
Russ and Brenning 2010; Schratz et al. 2019). This solves the problem of inconsist-
ency in bootstrapping (Chernick and LaBudde 2014; Kraamwinkel et al. 2018) and 
addresses the issue of autocorrelation in cross-validation (as discussed later in the 
text). K-means irregular partitioning can also be applied to the block bootstrap (Hall 
et al. 1995; Liu and Singh 1992). Sampling blocks of data from spatially pre-defined 
subsamples allows for drawing independent blocks of data but lowers the computa-
tional efficiency.

2.2 � Clustering of features regardless of location

Features measured in regions (or territorial units) can also be clustered to form pos-
sible homogenous clusters, which are later mapped. A very interesting example of 
a spatial study with hierarchical clustering presented in a dendrogram analyses fire 
distribution in Sardinia. It evidences phenological metrics as well as spatio-tempo-
ral dynamics of the vegetated land surface (normalised difference vegetation index 
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[NVDI] from satellite photographs) (Bajocco et  al. 2015) of each territorial unit. 
Hierarchical clustering groups the territorial units into similarly covered areas. For 
each cluster group, the fire frequency is determined in order to assess the natural 
conditions that increase and decrease fire-proneness.6

Non-spatial k-means clustering may also help in the detection of urban sprawl. 
Liu et al. (2008) proposed a-spatial partitioning of local spatial entropy H calculated 
for a gridded population. Local spatial entropy is expressed as H =

∑
i pi ln(pi) , 

where pi is the relative population in the analysed cell and eight neighbouring grid 
cells and 

∑i=9

i=1
pi = 1 . Clustering of entropy, when mapped, may delineate areas with 

high and low local density.
Clustering assignments may reveal uncertainty, which can be addressed. Hengl 

et  al. (2017) mapped soil nutrients in Africa, by selecting a number of clusters 
through running hierarchical clustering for parameterised Gaussian mixture models 
and optimising the Bayesian information criterion. Clustering itself is run on Aitch-
ison compositions of data, which helps to avoid highly skewed variable space. They 
use fuzzy k-means, which may classify observations into a few clusters with some 
probabilities. This uncertainty of multi-cluster assignment can be mapped using the 
scaled Shannon entropy index (SSEI). In the Hengl et  al. (2017) study, the SSEI 
reflected the density of sample points and extrapolation effects.

2.3 � Clustering of locations and values simultaneously

The clustering of locations and values in the individual procedures presented above 
can be linked. In the literature, some examples of spatially restricted clustering 
can be found. All of them deal with the issue of integrating spatial and non-spatial 
aspects. In general, they take two approaches: order of clustering—spatial issues 
first and then data (spatial-data-dominated generalisation) or the opposite (non-spa-
tial-data-dominated generalisation) or evaluating a trade-off by mixing or weighting 
dissimilarity matrices of data and space. As Lu et al. (1993) show, the order of spa-
tial and non-spatial clustering matters for the result.

Historically, the oldest application is SKATER (Spatial “K”luster Analysis by 
Tree Edge Removal) introduced by Assunção et  al. (2006), extended as REDCAP 
(Regionalisation with dynamically constrained agglomerative clustering and par-
titioning) by Guo (2008) and recently improved as SKATER-CON (Aydin et  al. 
2018). It is based on pruning the trees. For each region, it formulates a list of contig-
uous neighbours, and for each neighbour, it calculates the cost, that is, the total dis-
tance between all variables attached to areas. For each region, an algorithm chooses 
the two closest neighbours (in terms of data) and finally groups areas into the most 
coherent spatially continuous clusters. SKATER can be used in dynamic data analy-
sis for robust regionalisation—as in drought analysis in Pakistan (Jamro et al. 2019). 
It is also used to group GWR coefficients (see below).

6  Clusters are not always derived using a partitioning procedure. An example of detecting spatial clusters 
is a study on local obesity in Switzerland. Joost et al. (2019) mapped the local Getis-Ord Gi statistics for 
body mass index (BMI) and sugar-sweetened beverages intake frequency (SSB-IF), drawing conclusions 
“optically” from visualisation about spatial agglomeration of high and low values of Gi.
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Among the latest solutions is ClustGeo (Chavent et al. 2018) which examines the 
potential clustering of data and locations by studying the inertia of parallel hierar-
chical grouping of space and values. It derives two inertia functions (for space and 
values) depending on division. A compromise, when both inertia functions cross, 
sets the proportion of both groupings expressed by mixing parameter α. It weights 
both dissimilarity matrices,7 D0 for values and D1 for locations, in order to increase 
the clusters’ spatial coherence. ClustGeo (CG) developed by Chavent et al. (2018) 
was extended as Bootstrap ClustGeo (BCG) by Distefano et al. (2020). The boot-
strapping procedure generates many CG partitions. Spatial and non-spatial attributes 
are combined with the Hamming distance based on dissimilarity measures (silhou-
ette, Dunn, etc.) and are used in CG to obtain final partitioning, which minimises the 
inertia within clusters. The BCG approach outperforms CG, as proved by dissimilar-
ity measures. However, the algorithms are very demanding due to the dissimilarity 
matrix, which limits their application in the case of big data.

Clustering of locations and values jointly is also possible with k-means. It was 
applied to seismic analysis of the Aegean region (Weatherill and Burton 2009), 
for which not only the location of earthquakes but also their magnitude is essen-
tial. Proposed k-means clustering of locations refers to the magnitude in a quality 
criterion—the k-means optimisation requires minimising the total sum of squares 
within clusters, which means subtracting the individual values from the cluster aver-
age within each cluster. This cluster average was replaced by a magnitude-weighted 
average, which shifts the centroid of a cluster towards the stronger earthquakes.

Spatially oriented k-means clustering appears not only in regional science but 
also in biostatistics. In mass spectrometry brain analysis, the imaging is based on 
pixels, in which one observes spectra—being technically equivalent to time series. 
Alexandrov and Kobarg (2011) proposed the idea of spatially-aware k-means clus-
tering. As with every k-means approach, it is based on a dissimilarity (distance) 
matrix between pixels. To compare the distance between pixels, a composite dis-
tance between their spectra is determined. Instead of directly comparing two spec-
tra (one from each pixel), the method compares two weighted spectra, each averag-
ing the neighbouring spectra in radius r, similar to the spatial lag concept. Even if 
k-means clustering itself has no spatial component, the distances used in clustering 
include neighbourhood structure.

2.4 � Clustering of regression coefficients

Clustering procedures are more frequently applied to values than to geo-located 
points. In regional science, a popular approach is to cluster beta coefficients using 
geographically weighted regression (GWR). GWR operates as multiple local regres-
sions on point data, which estimate small models on neighbouring observations. 
This generates individual coefficients for each observation and variable, making 
those values challenging to summarise in a traditional manner. Mapping of the clus-
tered regression coefficients enables an efficient overview to be had. As many studies 

7  In the traditional a-spatial approach, clusters for observations are created based on a set of attributes 
assigned to these observations, while their diversity is reflected in the dissimilarity matrix D0.
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show (e.g. Lee et al. 2017), clusters are predominantly continuous over space, even 
if computations do not include explicitly locational information.

These output data—clustered GWR coefficients—can be used in a few ways in 
further analysis. Firstly, they can be used in profiling the locations assigned to differ-
ent clusters—a study by Chi et al. (2013) uses k-means clusters to present an obesity 
map. Secondly, one can model spatial drift (Müller et al. 2013), which addresses het-
erogeneity and autocorrelation. In the global spatial econometric model, which typi-
cally controls autocorrelation, one includes dummies for each cluster assignment, 
reflecting spatial heterogeneity. Müller et al. (2013) applied this approach to model-
ling public transportation services. Thirdly, one can model spatio-temporal stability 
(Kopczewska and Ćwiakowski 2021). For each period, GWR coefficients are esti-
mated and clustered separately. Next, they are rasterised, and for each raster cell, the 
median or mode values of the cluster ID are calculated. Finally, the Rand index and/
or Jaccard similarity index is applied to test the temporal similarity of the median/
mode cluster ID in each cell. This approach, which originally has been applied 
to housing valuation, can test spatio-temporal stability of clusters in any context. 
Fourthly, one can try to generalise clusters based on inter-temporal data. Soltani 
et al. (2021) applied GTWR (geographically and temporally weighted regression) to 
obtain single-period local coefficients and used the SKATER algorithm, which clus-
ters both locations and values, to delineate submarkets. Helbich et al. (2013) derived 
MGWR (mixed GWR), which keeps coefficients with non-significant variation con-
stant for inter-temporal housing data. For fully spatial coverage, they kriged coef-
ficients, reduced dimensions with PCA and clustered with SKATER, which allowed 
for the derivation of robust submarket division.

It is not only GWR coefficients that can be clustered. In general, clustering 
requires multiple values to be grouped. This occurs in bootstrapped regression. The 
majority of the literature runs bootstrapped OLS (ordinary least squares) models 
with a single explanatory variable only, enabling a simple summary of beta in one-
dimensional distribution. However, for more than one explanatory variable, deriva-
tion of “central” coefficient values requires multi-dimensional analysis, which has 
not been presented in the literature until now. A solution to this problem is a PAM 
algorithm in the one-cluster study. As it searches for the in-sample “best representa-
tive”, it finds the best model, which is most central with regard to all its beta coef-
ficients. This approach was presented in Kopczewska (2020, 2021) in bootstrapped 
spatial regression to solve big data limitations.

2.5 � Clustering based on density

The above-discussed clustering procedure has three main features: (a) an algorithm 
used a distance matrix; (b) all points or regions were classified to one of the clusters; 
and (c) user assumed a priori a number of clusters. Density-based clustering dif-
fers in all those aspects. Its goal is to detect hot spots, defined as a localised excess 
of some incidence rate and understood as locally different density (e.g. dense and 
sparse areas). The implication of the hot spot approach is an automatic partitioning 
mechanism that assigns observations to clusters and leaves others as noise.
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One of the most commonly used solutions is the DBSCAN algorithm (density-
based spatial clustering of applications with noise) (Ester et al. 1996), which detects 
the local density of a point pattern. In simple terms, it screens the surroundings 
of each point iteratively by checking whether the minimum number of points is 
located in a specified radius. If yes, points are classified as the core; if not, points 
are classified as border points when the given point belongs to the core point radius 
or as noise if the point is located outside the radius of the core point. This algo-
rithm works mostly in 2D (on the plane) or 3D (in the sphere); broader applica-
tions are rare but are slowly appearing (as 6D DBSCAN) (Czerniawski et al. 2018). 
What is essential is that it does not use a mutual n × n distance matrix, thus auto-
matically increasing its efficiency in big data applications. It also does not assume 
any parametric distributions, cluster shapes or number of clusters and is resistant 
to weak connections and outliers. DBSCAN was extended in different directions, 
e.g. as C-DBSCAN (density-based clustering with constraints) (Ruiz et  al. 2007), 
which controls for “Must-Link” and “Cannot-Link”, ST-DBSCAN (spatio-temporal 
DBSCAN) (Birant and Kut 2007), K-DBSCAN (Debnath et al. 2015) and OPTICS 
(Ankerst et  al. 1999) for different density levels and HDBSCAN (hierarchical 
DBSCAN) (Campello et  al. 2013) which finds epsilon automatically (Wang et  al. 
2019a, b). Joshi et  al. (2013) have run multi-dimensional DBSCAN for polygons, 
in which the spatial ε-neighbourhood (points in a radius of ε) is substituted with a 
spatio-temporal neighbourhood. Khan et al. (2014) and Galán (2019) have reviewed 
the latest advances in DBSCAN and their applications.

DBSCAN has many applications. Pavlis et al. (2018) used DBSCAN to estimate 
the retail spatial extent. To address local variability, they used individual radii in 
subsets derived from a distance‐constrained k‐nearest neighbour adjacency list. Cai 
et  al. (2020) estimate tropical cyclone risk with ST-DBSCAN. It can be used in 
astronomy, e.g. to test the spatial distribution of Taurus stars (Joncour et al. 2018), 
where the DBSCAN parameters were set based on correlation function and knn. It 
can be applied to the classification of objects from imaging with an airborne LIDAR 
technique (Wang et al. 2019a, b), WLAN indoor positioning accuracy (Wang et al. 
2019a, b) and traffic collision risk in maritime transportation (Liu et al. 2020a, b). 
DBSCAN may also work with text data and computer codes. Mustakim et al. (2019) 
ran DBSCAN on the cosine distance obtained for text representation (frequency-
inverse document frequency and vector space model) and checked partitioning qual-
ity with the silhouette. Reis and Costa (2015) clustered computer codes; they used 
tree edit distance (as Levenshtein distance) for strings to compare trees, which con-
stituted the input data for DBSCAN. Their analysis clustered codes in terms of exe-
cution time, which helps in the pro-ecological selection of equivalent, but quicker 
codes.

Before the introduction of DBSCAN, there were a few other methods for scan-
ning statistics, constructed based on a moving circle—GAM (geographical analy-
sis machine), BNS (Besag–Newell statistic) and Kulldorff’s spatial scan statistics. 
GAM (Openshaw et  al. 1987) works on point data within a rectangle and divides 
an area into grid cells, and for each grid, it plots a ring of the radius (radii) r speci-
fied by the user. It counts cases (e.g. disease) within a circle and makes a compari-
son of that number with the expected number of points from Poisson distribution 
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(e.g. population) or other phenomena cases. The significant circle is the output. BNS 
(Besag and Newell 1991) works similarly to GAM but with a pre-defined cluster 
size k. This means that each ring expands to reach k cases inside and is then com-
pared with the underlying distribution. Spatial scan statistics (Kulldorff 1997) com-
pares within the moving ring the probability of being the case given populations at 
risk inside and outside the ring. The ring is adaptive (up to a given percentage of 
total cases). However, nowadays, only Kulldorff’s measure is still applied widely in 
epidemiological studies, while GAM and BNS have largely been forgotten. A nota-
ble progressive method stemming from GAM is a scan test for spatial group-wise 
heteroscedasticity in cross-sectional models (Chasco et al. 2018).

After DBSCAN,8 there arose a group of methods based on the Voronoi/Dirichlet 
tessellation (Estivill-Castro and Lee 2002; Lui et al. 2008), called Autoclust. In the 
Voronoi diagram, for each point, the mean and standard deviation of the tile’s edges 
are calculated. In dense clusters, all edges are short; in the case of border points, the 
variance of edges increases, as one edge is significantly longer than the other. Analy-
sis of edges and border points delineates the borders of dense clusters. The biggest 
advantage is that parameters (the number of clusters) are self-establishing, which is 
not the case with k-means or DBSCAN. This approach was also forgotten and did 
not become a part of machine learning due there being a lack of solutions for predic-
tions. Recently, proposals of 3D implementations (Kim and Cho 2019) have been 
put forward, suggesting a revival of this method.

2.6 � Overview of ML spatial clustering

The above-discussed methods differ in their approaches, but their goal is similar. 
In any case, one may ask the question: to which cluster does a given spatial point 
belong? Depending on input data, the answer may be: (i) a cluster of spatially close 
points; (ii) a cluster of feature-similar observations; (iii) a cluster of points that 
are both spatially close and have similar features; (iv) a cluster of similar regres-
sion coefficients; or (v) a cluster of densely located points. Spatial locations can be 
addressed directly with geo-coordinates, but can also be addressed as one of the 
clustered features, as a restriction in the pairing of points, as weight in optimisation, 
as background in running the GWR regression, or as local density (Fig. 1).

This methodological summary can have applications for many regional science 
problems. It can facilitate the locating of clusters of features and can map them in 
a smart way, so as to ascertain whether or not geographic segmentation exists and 
whether points (customers) are clustered. It can be applied to the analysis of (co)
location patterns emerging from the values, in order to determine where our custom-
ers are, where else they visit, where to locate the business, and who the best neigh-
bours will be. Finally, it can help to reduce multi-dimensional data.

Machine learning combines older, more established statistical concepts with 
new challenges. Current methodological research efforts are focused on better 

8  After DBSCAN, a group of grid-based clustering algorithms were introduced, which are less popu-
lar. A spatial solution STatistical INformation Grid-based clustering method (STING) was proposed by 
Wang et al. (1997).
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forecasting, improving computational efficiency (especially with big data), and find-
ing more sophisticated approaches, such as for spatial techniques. Even if this sum-
mary aims to provide a comprehensive description of spatial clustering designs, 
there are still more methods to be found in the literature. One of these is cluster cor-
respondence analysis for multiple point locations, to address the occurrence of the 
same event in many places (Lu and Thill 2003).

3 � Econometric applications of machine learning to spatial data

Machine learning approaches to the dependency between variables are demonstrated 
by another class of models, which differ from traditional econometrics in following 
ways: (a) even if the input data (x and y) seem similar, the structure of the model 
itself is much less transparent; (b) as the machine learning modelling searches 
numerically for the best model, the forecasts are mostly much better than in classical 
theory- and user-feeling-driven approaches; and (c) due to data selection via boost-
ing, sampling, bootstrapping, etc., the machine learning model can work with much 
bigger datasets.

There are two general groups of ML models: (a) typical regressions, which link 
the levels of features of variables x and y, and (b) classifiers, which detect feature 
levels x in observed classes y. The fact of both features x and classes y being known 
in supervised machine learning is in contrast to the unsupervised learning approach, 
which clusters data without a priori knowledge of which observation is in which 
group. Many spatial classification problems are as follows: from an image (e.g. 
pixels of a satellite photograph) features of the land are extracted (e.g. vegetation 
index, water index, land coverage) and geographical information added (e.g. loca-
tion coordinates). Additionally, one knows the real classification (e.g. type of crops), 
which is to be later forecasted with the model. A common application is to teach an 
algorithm to determine the desired image elements by linking information from the 
photograph with the real class, where an image pixel is an individual observation. 
Subsequently, the model can detect those elements in new photographs to predict the 
class. This is widely applied in agriculture to distinguish between different crops, 
landscape and land uses (Pena and Brenning 2015). It also works in geological map-
ping (e.g. Cracknell and Reading 2014). Possible new applications are regional 
socio-economic development indicators based on night-light data or land use satel-
lite images (e.g. Cecchini et al. 2021).

The most common machine learning classifier models are: naive Bayes (NB), 
k-nearest neighbours (kNN), random forests (RF), support vector machines (SVM), 
artificial neural networks (ANN), XGBoost (XGB) or Cubist. (Details of methods 
are outlined in “Appendix 1”). Recent years have also seen the introduction of so-
called ensemble methods, which are combinations of the aforementioned classifiers. 
There are many studies on which methods perform the best (very often, it is random 
forest), or which ones are equivalent to classical approaches. Table 1 presents the 
latest studies which use the ML toolbox.

Machine learning models are not only more accurate than traditional methods, 
but might also be much faster. Sawada (2019) reports that applying machine learning 
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and the Markov chain Monte Carlo approach to a land surface model decreases com-
putation time by 50,000 times.

It is generally agreed that most machine learning methods in spatial applications 
do not consider relative location and neighbourhood features and that they analyse 
pixels regardless of their surroundings. However, many authors have proposed vari-
ous measures to address the spatial dimension, which are presented below.

3.1 � Simple regression models to answer spatial questions

The most basic application of ML is to run a classification or regression model 
on data that is spatial in nature. Examples published in recent years apply to spa-
tial data just as they do to any other kind of data—one understands that data are 
geo-projected and were gained in specific locations, but no spatial information is 
included. There are many examples. Appelhans et al. (2015) explained temperatures 
on Kilimanjaro using elevation, hill slope, aspect, sky-view factor and vegetation 

Fig. 1   Unsupervised spatial machine learning models. Source: Own concept
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index data—they used machine learning models in a regression, with the only spa-
tial issue being spatial interpolation with kriging.9 Similarly, Liu et  al. (2020a, b) 
ran non-spatial regression and a random forest model on socio-economic and envi-
ronmental variables to explain poverty in Yunyang, China, using data from 348 
villages. The only computational spatial component was the Moran test of residu-
als, which showed no evidence of spatial autocorrelation. The study was effective 
because it merged different sources of geo-projected data: surface data for eleva-
tion, slope, land cover types and natural disasters (with spatial resolution of 30 m 
or 1:2000); point data, such as access to town, markets, hospitals, bank, schools, or 
industry, taken from POI (point-of-interest) or road density networks (on a scale of 
1:120,000); and polygonal data for the labour force from a statistical office. Rod-
ríguez‐Pérez et al. (2020) modelled lightning‐triggered fires in geo-located grid cells 
in Spain. They used RF, a generalised additive model (GAM) and spatial models to 
show instances of lightning‐triggered fires appearing in a given grid-cell were attrib-
utable to observable features in that location, such as vegetation type and structure, 
terrain, climate and lightning characteristics. Also, an applied example of statistical 
learning in a book by Lovelace et al. (2019) uses a generalised linear model on ras-
tered data of landslides (e.g. slope, elevation) with point data of interest. The spatial 
location and autocorrelation are included in spatial cross-validation.

Another interesting example is the mapping of rural workers’ health conditions 
and exposure to severe disease (Gerassis et  al. 2020) using a ML approach. The 
study is based on geo-located medical interviews which provided health data—both 
hard medical data and the person’s general health condition. Using a ML Bayes-
ian network (BN), the authors discovered which variables were connected with the 
patient’s condition when they were flagged as ill. In the next step, with binary logis-
tic regression run on individual cases and thresholds from the BN, model classi-
fication was obtained, and predictions of high disease risk for a person could be 
made. Spatial methods appear only for interpolation of illness cases observed, which 
is a separate model—Gerassis et al. (2020) used the point-to-area Poisson kriging 
model, which deals with spatial count data, unequal territories and diverse popu-
lation composition. The spatial challenge was in the different granulation of data: 
point data in the study sample and polygonal data as a basis of prediction.

3.2 � Spatial cross‑validation

Current implementations of machine learning in the spatial context are often 
restricted to spatial k-fold cross-validation (CV) only, which can solve the issue 
of non-independence. This works by dividing points into irregular k clusters (by 
using k-means, for example) and selecting one cluster as an out-of-sample cross-
validation part. Due to spatial autocorrelation between training and testing obser-
vations, simple spatial data sampling gives biased and over-optimistic predictions. 
However, spatial CV increases prediction error (Liu 2020). Lovelace et  al. (2019) 
show that a spatially cross-validated model gives a lower AUROC (area under the 

9  Kriging, which is often a part of ML modelling, is also the best imputation method in the case of miss-
ing data (Griffith & Liau, 2020).
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receiver operator characteristic curve), as it is not biased by spatial autocorrelation. 
The same applies to models that tune hyper-parameters (e.g. SVM) using sampling 
(Schratz et  al. 2019). In the case of spatio-temporal data, one should account for 
spatial and temporal autocorrelation when doing CV  (Meyer et  al. 2018). Spatial 
cross-validation is becoming a standard (e.g. Goetz et al. 2015; Meyer et al. 2019), 
but some studies still neglect this effect and do not address the autocorrelation prob-
lem (Park and Bae 2015; Xu and Li 2020).

3.3 � Image recognition in spatial classification tasks

One of the typical applications of ML is image recognition in spatial classification 
tasks. A good example is supervised lithology classification, i.e. geological map-
ping (Cracknell and Reading 2014). As input (X), data from airborne geophysics 
and multispectral satellites are used, while as output (Y) for a given territory, the 
known lithology classification is used, shown as polygons on the image for each 
class. The xy coordinates of the pixels of those images are also known. In the model-
ling process, an algorithm is produced which discovers the lithology classification 
from airborne geophysics and multispectral satellites. Three kinds of models are run 
on pixel data: (i) X → Y, (ii) xy coords → Y and (iii) X and xy coords → Y, using the 
aforementioned NB, kNN, RF, SVM and ANN algorithms. In fact, this is an image 
processing phase, in which software is taught to understand what is in the picture, 
and each pixel is classified according to lithology. The goodness of fit and predic-
tion differ between models. ML produces the model, which will generate a lithology 
classification when fed with new satellite and airborne data. A similar study was 
conducted by Chen et al. (2017), who used the following 11 conditioning factors to 
predict landslide data: elevation, slope degree, slope aspect, profile and plan curva-
tures, topographic wetness index, distance to roads, distance to rivers, normalised 
difference vegetation index, land use, land cover and lithology. They used maximum 
entropy, neural networks, SVM and their ensembles.

A very different approach is involved when dealing with dynamic spatial data. 
Nicolis et  al. (2020) modelled earthquakes in Chile. Their dataset of seismic 
events spanned a period of 17 years, with 86,000 geo-located cases occurring over 
6,575 days. For each day that an earthquake was recorded, they created a grid-based 
image (1° × 1°) of the territory; grid intensity was estimated by an ETAS (epidemic-
type aftershock sequences) model. Using this, they applied deep learning methods, 
such as long short-term memory (LSTM) and convolutional neural networks (CNN) 
for spatial earthquake predictions—predicting the maximum intensity and the prob-
ability that this maximum will be in a given grid cell.

Images as predictors in spatial models are not always informative. Fourcade et al. 
(2018) proved that images that are meaningless for spatial process such as paintings 
or faces can predict environmental phenomena well. This finding formed the basis 
of deeper studies (Behrens and Rossel, 2020) which reached two major conclusions. 
Firstly, spurious correlations without causality raise the danger of meaningless but 
efficient predictors, which can be mitigated by using domain-relevant and struc-
turally related data. Secondly, by comparing the variograms of regressors, it was 
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recommended to use covariates with the same or a narrower range of spatial depend-
ence than the dependent variable. Meyer et al. (2019) have similarly concluded that 
highly correlated covariates result in over-fitted models, which replicate data well 
and fail in spatial predictions.

3.4 � Mixtures of GWR and machine learning models

An example of development and adaptation of traditional methods is the transforma-
tion of geographically weighted regression (GWR) into a machine learning solution. 
The process behind GWR lies in applying small local regressions to neighbouring 
points for each observation instead of one global estimation. Additional factors to 
consider are: (i) the radius and shape of the “moving geometry” (e.g. circle, ellipse), 
which indicates which points to include in a given local regression; (ii) its flexi-
bility—fixed kernel for a fixed radius and adaptive kernel for a changing radius to 
react to various densities of the point data; and (iii) the weighting scheme—whether 
observations included in local regressions have the same weight when distance-
decaying from the core point. These features of GWR can be applied to any machine 
learning model. Li (2019) mixed GWR with neural networks, XGB and RF to 
improve wind speed predictions in China by more effectively capturing local vari-
ability. It gave a 12–16% improvement in R2 and a decrease in RMSE (root mean 
square error). Quiñones et  al. (2021) applied GWR concept with RF in analysing 
diabetes prevalence and showed that it detects well the spatial heterogeneity.

According to Fotheringham et  al. (2017), traditional GWR should be replaced 
by multiscale geographically weighted regression (MGWR). In MGWR, the user 
decides on bandwidth not only with regard to location/local density but allows for 
optimisation of covariate-specific bandwidth. The performance of MGWR surpasses 
that of simple GWR. In both approaches, the problem of bias when “borrowing” 
data from territories with a different local process is negligible (Yu et al. 2020).10

3.5 � Spatial variables in machine learning models

It has become very popular to replace geo-statistical models with machine learning 
solutions in order to model and interpolate spatial point patterns. In fact, the current 
literature makes comparisons between geo-statistical models (such as regression 
kriging and geographically weighted regression), between prediction models (ordi-
nary kriging and indicator kriging, for example) and between multiscale methods 
(such as ConMap and ConStat). It also compares contextual spatial modelling with 
ML models.

Over the last decade, researchers have been looking for the best model for spa-
tial interpolation. The most straightforward approach, introduced in early studies (as 
Li et  al. 2011), simply monitors the efficiency of non-spatial ML models in spa-
tial tasks. Mostly, they have combined RF or SVM with ordinary kriging or inverse 

10  Geographical and Temporal Weighted Regression (GTWR) is also used, to address time series (Foth-
eringham et al. 2015).
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distance squared. Random forest was often proven to be the most accurate method, 
which increased its popularity in further studies. This approach is still used. For 
example, Sergeev et al. (2019) predicted the spatial distribution of heavy metals in 
soil in Russia by applying a hybrid approach: they simulated a general nonlinear 
trend using an artificial neural network (ANN) (by applying the generalised regres-
sion neural network and multilayer perceptron) and fine-tuned the residuals with the 
classical geo-statistical model (residuals kriging).11

Later solutions have aimed to include spatial components among covariates, 
namely coordinates or distances between other points. Hengl et al. (2018) have pro-
moted the use of a buffer distance among covariates of random forest. The buffer 
distance is calculated between each point of the territory and observed points. It 
can be a distance to a given point or a distance to low, medium or high values. 
Hengl et al. (2018) give a number of empirical examples to show that this solution 
is equivalent to regression kriging but is more flexible in terms of specification and 
allows for better predictions. Buffer distance is used to address spatial autocorrela-
tion between observations and works better than the inclusion of geographical coor-
dinates. Another example of this is in Ahn et al. (2020), who used the random forest 
model with spatial information to predict zinc concentration, having only its geo-
location to work with. They considered PCA reduction of dimensions in distance 
vectors and used kriging for expanding predictions on new locations. They high-
lighted a trade-off between the inclusion of coordinates (which give lower model 
precision and do not allow for the controlling of spatial autocorrelation, but which 
do not overload computational efficiency) and the inclusion of the distance matrix 
(which works in the opposite manner). They showed that the best solution is to use 
PCA-reduced distance vectors, which limit the complexity and improved estimation 
performance. An alternative is to add spatial lag and/or eigenvector spatial filtering 
(ESF), which can deal with most autocorrelation issues (Liu 2020). The proposals of 
Ahn et al. (2020) and Liu (2020) may lead to an increased number of applications 
of random forest for spatial data, as it works for predicting 2D continuous variables 
with and without covariates, as well as binominal and categorical variables, and can 
effectively address extreme values and spatio-temporal and multivariate problems 
(Hengl et al. 2018). In general, random forest, compared with geo-statistical models, 
requires fewer spatial assumptions and performs better with big data.

An alternative approach to including spatial components is using Euclidean dis-
tance fields (EDF), which address non-stationarity and spatial autocorrelation and 
improve predictions (e.g. in soil studies) (Behrens et al. 2018). These are features 
of analysed territory generated in GIS. Typically, for each point of territory seven 
EDF covariates are derived: X and Y coordinates, the distances to the corners of a 
rectangle around the sample set and the distance to the centre location of the sample 
set. They prove that as long as spatial regressors have a narrower range of spatial 
dependence than the dependent variable, they improve the model.

11  They also use many prediction quality measures such as correlation, R2, RMSE, Willmott’s index of 
agreement and a ratio of performance to interquartile distance (RPIQ) between the prediction and raw 
test data.
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The selection of spatial variables to the model is still ambiguous. In many papers, 
all collected variables are included, with trust that ML methods by their nature will 
eliminate the redundant ones. Some studies propose running standard a-spatial algo-
rithms as BORUTA (Amiri et al. 2019) to indicate which variables should stay in 
the model. There are also proposals for the removal of correlated covariates and 
regularisation to cope with multi-collinearity (Farrell et al. 2019); these actions will 
not significantly impact the results—random forest showed the best performance on 
raw data; however, spatial autocorrelation was not addressed. There are also some 
controversies. Meyer et al. (2019) assessed the inclusion of spatial covariates using 
quality measures such as kappa or RMSE. They claim that longitude, latitude, eleva-
tion and the Euclidean distances (also as EDF) can be unimportant or even coun-
terproductive in spatial modelling, and they recommend that those regressors be 
eliminated from models. They highlighted two other aspects: Firstly, contrary to the 
popular narrative, they do not approve of the high fit of ML models, treating them 
as over-optimistic and misleading; secondly, they claim that in the course of visual 
inspection, one observes artificial linear predictions resulting from the inclusion of 
longitude and latitude, and that their elimination helps in making predictions real.

3.6 � Overview of spatial ML regression and classification models

The above-described modelling patterns can be summarised in a general framework, 
which consists of four stages: data integration, data modelling, model fine-tuning 
and prediction (Fig. 2). All of them include spatial components.

1.	 Data integration The central focus of many current spatial machine learning stud-
ies is in the integration spatial data in different formats. As a standard, one uses 
geo-located points (for observation location, point-of-interest, etc.), irregular pol-
ygons (for statistical data), regular polygons such as grids or rasters (for summed 
or averaged data within that cell), lines (such as rivers or roads) and images (such 
as satellite photographs, spectral data, digital elevation models, vegetation and 
green leaf indices, etc.). There is a diverse range of forms of individual observa-
tion: point, polygon, grid or pixel. Depending on the researcher’s choice of data 
target granulation, the dataset integration process may be only technical or may 
involve more or less advanced statistical methods. For classification purposes, 
the researchers may add the classes of objects manually.

2.	 Modelling Machine learning methods differ from econometric12 algorithms when 
obtaining a mutual relationship between the dependent (y) and explanatory (x) 
data. Regression models are used to explain usually continuous variables, while 
classification models are used for categorical variables. ML models for spatial 

12  Due to its inherited spatial weights matrix, spatial econometrics, deals with neighbourhood, tracks 
the spillover and importance of relative location, and technically improves the quality of estimation by 
reducing bias and improving consistency. By adding distance variables one controls for distance-decay 
patterns and spatial interactions. Dummies for specific location (such as the Central Business District, 
on the border, at the seaside, in the main city) measure the effect of absolute location and special spatial 
features.
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data have mostly neglected the issue of spatial autocorrelation between obser-
vations. The latest studies, however, have aimed to address this issue by using 
spatial variables among covariates. These can be geo-coordinates, distance to a 
given point (e.g. core), mutual distances between observations, PCA-reduced 
mutual distances between variables, buffer distance, spatial lag of the variable and 
eigenvector or Euclidean distance fields. Addressing the spatial autocorrelation 
issue not only enables the training data to be successfully reproduced well but 
also allows predictions to be made in new locations beyond the dataset (Meyer 
et al. 2019). GWR-like local machine learning regression bridges the gap between 
spatial and ML modelling. This stage results in sets of global or local regression 
coefficients or thresholds of decision trees.

3.	 Model fine-tuning The common approach is to test and improve model estimation 
with k-fold cross-validation. For a long time, many scientists reported excellent 
performance among ML models when testing them on fully randomly sampled 
observations. The current literature suggests that not addressing autocorrelation 
falsely improves the quality of the model, and they recommend spatial cross-
validation to overcome this—it takes as folds the k-means spatially continuous 
clusters of data. The other option is classical testing of spatial autocorrelation of 
model residuals (e.g. Moran’s I) and re-estimation of whether the spatial pattern 
is found.

4.	 Prediction The majority of ML studies are oriented towards predictions based on 
the model. In regression tasks, they often use one of the kriging variants, which 
expands results from observations on all possible points within the analysed ter-
ritory. In classification tasks primarily based on pixel data, the calibrated models 
are fed with a new image that enables running prediction for all input pixels.

The general overview from the literature is that visible progress has been made 
in the development of spatial machine learning modelling. Over the last decade, the 
following approaches have been developed:

1.	 Classic ML + non-spatial variables + random cross-validation,
2.	 Classic ML + spatial all variables + random cross-validation,
3.	 Classic ML + spatial all variables + spatial cross-validation,
4.	 Classic ML + spatial selected variables + spatial cross-validation,
5.	 Spatial ML + spatial selected variables + spatial cross-validation.

The current standard of modelling is expressed by approach “(4) Classic 
ML + spatial selected variables + spatial cross-validation”. Models estimated 
with approaches (1), (2) or (3) may not be fully reliable, due to the autocorrela-
tion issues discussed above. The progress and innovations in the development 
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of approach (5) are mostly concerned with the formulation of ML methods to 
incorporate spatial components into the algorithms.

It is clear from many studies that unaddressed spatial autocorrelation gener-
ates problems, such as overoptimistic fit of models, omitted information and/or 
biased (suboptimal) prediction. Thus, an up-to-date toolbox dealing with spatial 
autocorrelation should be used in all ML models in order to ensure methodolog-
ical appropriateness. One can mention here methods such as (i) adding spatial 
variables as covariates; (ii) GWR-like local ML regressions; (iii) using spatial 
cross-validation; (iv) testing for spatial autocorrelation in model residuals; v) 
running spatial models on grids or pixels a with spatial weights matrix W; and 
(vi) running spatial predictions with kriging. To sum up, the spatial dimension 
and spatial autocorrelation can be addressed at each stage of the modelling pro-
cess, and combinations of these solutions seem to improve the quality of mod-
els. ML algorithms are often more efficient than classical spatial econometric 
models, which renders them more effective in dealing with big spatial data.

4 � Perspectives of spatial machine learning

The methodological solutions presented above open up new pathways for advanced 
research using spatial and geo-located data.

Firstly, these methods enable more efficient computation in the case of big data 
and inclusion of new sources of information. Switching from regional data to a finer 

Fig. 2   Spatial machine learning modelling. Source: Own concept
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degree of data granulation—such as individual points or pixels of the image—brings 
about a significant increase in the magnitude of datasets. This higher level of granu-
lation is especially troublesome for a classical spatial econometrics based on an n 
× n spatial weights matrix W or n × n distance matrix. As indicated by Arbia et al. 
(2019), the maximum size of the dataset for computation with personal computers 
is around 70,000, while even with 30,000 observations, the creation of W is already 
challenging (Kopczewska 2021). ML models, which are free of W, are automatically 
quicker, but the issue of autocorrelation, currently treated as critical, is addressed in 
another way. New sources of data, such as lightmaps of terrain (Night Earth, Europe 
At Night, NASA, etc.) or day photographs of landscape (Google Maps, Street View, 
etc.), bring new insights and information and are useful due to the robustness of 
their big-data analytics (see “Appendix 3”). Spatial data handling (e.g. processing 
remote sensing image classification or spectral–spatial classification, executed with 
supervised learning algorithms, ensemble and deep learning) is especially helpful in 
big data tasks (Du et al. 2020).

Secondly, the methods present a way to address spatial heterogeneity and isot-
ropy. Classical spatial econometrics was focused on spatial autocorrelation and 
mostly neglected other problems. Local regressions, combined with global ones, 
help in capturing unstable spatial patterns. The overview of methods shows that 
integration of classical statistics and econometrics with machine learning enables 
more tools to be added to the modelling toolbox than with a single approach.

Thirdly, the methods open up possibilities for spatio-temporal modelling and 
for studies of the similarities between different layers: spatial, multi-dimensional 
and spatio-temporal, among others. The dynamics connected to location can be 
addressed in more ways than just the classical panel model. One of the approaches is 
to run similar to PCA method EOF (empirical orthogonal functions) decomposition 
(Amato et al. 2020).

Fourthly, these methods allow for better forecasting due to inherited boosting and 
bootstrapping in ML algorithms. ML results are also more flexible for spatial expan-
sion into new points. Ensemble methods, popular in ML, are enabling researchers to 
make the best prediction. A shift from spatial econometrics towards spatial ML also 
represents a move from explanation to forecasting. The predictive power of classical 
spatial models was rather limited (Goulard et  al. 2017), mostly due to simultane-
ity in spatial lag models. The second problem was that out-of-sample data were not 
included in W and therefore impossible to cover with the forecast. New solutions 
such as ML spatial prediction can be fine-tuned in line with spatial econometric pre-
dictions based on bootstrapping models (Kopczewska 2021).

Fifthly, these methods foster the development of new innovations, such as indi-
cators based on vegetation or light indices. The methods presented also introduce 
3D solutions to certain areas of spatial studies, such as social topography (with 3D 
spatial inequalities) (Aharon-Gutman et al. 2018; Aharon-Gutman and Burg 2019), 
3D building information models (Zhou et  al. 2019) or urban compactness growth 
(Koziatek and Dragićević 2019). There are urban studies that rely on information 
from Google Street View, such as those that count cars, pedestrians, bikers, etc., 
to predict traffic (Goel et al. 2018), or those recording indicators of urban disorder 
(such as cigarette butts, trash, empty bottles, graffiti abandoned cars and houses) to 
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predict neighbourhood degeneration (Marco et al. 2017) or studies that count green 
vegetation indices in order to predict degrees of safety (Li et al. 2015).

All of the above demonstrates that spatial modelling built on econometrics, statis-
tics and machine learning is the most effective approach. It has wide-ranging appli-
cations in such areas as epidemiology, health, crime, the safety of the surrounding 
area, location of customers, business, real estate valuation, socio-economic develop-
ment and environmental impact, among many others.

In addition to all of this, the ML approach can still provide the answer to common 
questions, which have been asked over recent years in quantitative regional stud-
ies. On the one hand, these studies are designed to examine invisible policies and 
their impact on observable phenomena—by studying policy flows, core-periphery 
patterns and their persistence, urban sprawl patterns, diffusion and spillover from 
the core to the periphery, cohesion and convergence mechanisms, institutional 
rent, effects of administrative division, the role of infrastructure and the effects of 
agglomeration. On the other hand, these studies may be of an opposite nature, that 
is, analysing visible spatial patterns to draw conclusions about unobservable phe-
nomena, such as studying clusters, tangible flows such as trade or migrations, simi-
larity and dissimilarity of locations, spatio-temporal trends, spatial regularities in 
labour markets, GDP and its growth, education, location and movements of custom-
ers, and business development, location and co-location. In those studies, questions 
on spatial accessibility, spatial concentration and agglomeration, spatial separation, 
spatial interactions and spatial range have mostly been answered.

Progress in science over the past decades has involved the interdisciplinary trans-
fers of knowledge and methods. Regional science is yet to experience such a trans-
fer. The general findings presented in recent papers would suggest that it has already 
begun (with first literature reviews on ML for spatial data by Nikparvar and Thill 
(2021)), but the regional science filed still awaits mass interest from researchers.

5 � Conclusions

This paper shows that, even if universal in terms of algorithms used, machine learning 
(ML) solutions are very specific in field applications. ML design in regional science 
presented above differs from designs in genetics and genomics (Libbrecht and Noble 
2015), medicine (Fatima and Pasha 2017), robotics (Kober et  al. 2013), neuroimag-
ing (Kohoutová et al. 2020), etc. When applying ML in their fields, researchers should 
use general over-disciplinary knowledge as a basis and fine-tune their approach with 
field-specific solutions. This paper makes guidelines for regional and spatial analysts 
to better understand better how to include spatial aspects, geographical location and 
neighbourhood relations into the models.

The complexity of ML modelling finds its reflection in transparency and reproduc-
ibility. In many disciplines that heavily use ML, community-driven standards of ML 
reporting appear. This can be found in biology (Nature Editorial 2021a), for which 
one proposes DOME (Walsh et al. 2021) and AIMe (Matschinske et al. 2021) guide-
lines for reporting ML results. Present also are general recommendations to increase 
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the transparency of all necessary steps in computations. It is important that it does not 
refer to the modelling phase only, but also to data curation, generation and division into 
training, validation and test datasets. It also covers data, code and model availability 
(Nature Editorial 2021b). Within life sciences, one considers three standards of report-
ing, Bronze, Silver and Gold, which differ in rigour for computational reproducibility 
(Heil et al. 2021). Bioinformatics proposes workflow managers, which are ready-to-use 
environments assuring shareable, scalable and reproducible biomedical research (Wrat-
ten et al. 2021). One can expect those solutions also in regional science to appear soon. 
However, the specificity of spatial data will require adjusted reporting standards, which 
may address the geographical information systems (GIS) issues.

Machine learning, which is booming in all computational disciplines, has become 
a new analytical standard, as OLS or p value was until now. The interdisciplinary dia-
logue requires using the same language; thus, it is a must essential to accept, use and 
develop ML methods in regional science research. The presented overview shows that 
many developments targeted towards spatial data and regional science problems are 
already available. However, some methodological gaps need new ideas dedicated to 
regional science problems. The biggest challenge is using information from the neigh-
bourhood still (Hagenauer et al. 2019), accounting for spatial autocorrelation and het-
erogeneity, using information from satellites and photographs, predicting for new loca-
tions and scalability of methods.

Appendix 1: Overview of quantitative concepts

Below is a description of the methods mentioned in the paper—distance metrics, clus-
tering with k-means, PAM and CLARA, hierarchical clustering, spatial clustering with 
SKATER and REDCAP, DBSCAN clustering, clustering quality measures (silhouette, 
inertia, Dunn index), k-fold cross-validation, typology of supervised machine learning 
methods, Naïve Bayes classifier, K-nearest neighbours classifier, random forest classi-
fier, support vector machines, artificial neural networks, maximum entropy classifier, 
autoencoder-based residual network, gradient boosting and Cubist.

Distance metrics

Clustering algorithms, which are based on mutual distance 
between points, use different metrics of distance. For two points 
X =

(
x1, x2, x3,… , xn

)
and Y =

(
y1, y2, y3,… , yn

)
, one can define (Fig. 3):

•	 Euclidean distance 
�∑n

i=1

�
xi − yi

�2 , which measures the shortest way between 
points. It compares pairs of observations, variable by variable, and calculates the 
square root of the sum of squares of differences between values of variables.

•	 Manhattan (urban, city-block) distance 
∑n

i=1
��xi − yi

�� , also called urban distance, 
which uses perpendicular sections to connect points as if moving around the 
edges of the grid. It compares pairs of observations, variable by variable, and 
calculates the absolute difference of their values, which is summed up.
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•	 Minkowski distance 
∑n

i=1
(�xi − yi�p)1∕p , which is a generalisation of Euclidean 

and Manhattan distances and allows for a nonlinear, curved way between points.

In addition to the above three metrics, one can use the following concepts:

•	 Gower distance (also Gower dissimilarity) introduced by Gower (1971), can be 
applied to a mix of numerical and categorical variables. It compares pairs of 
observations, variable by variable, and calculates the average distance score 
between those observations. Components of the score are from range [0,1] and 
also their average. For quantitative variables, the score is the absolute value of 
difference between values of observations divided by the variable range: 
|||xi − xj

|||
/
(max (x) −min(x)) . For qualitative variables, it gives 0 if they are the 

same and 1 if they are different. Low values of Gower distance represent higher 
degrees of similarity.13

•	 Mahalanobis distance introduced by Mahalanobis (1936), includes correlations 
between variables 

√
(x − y)Tcov(x, y)−1(x − y) . To calculate this distance, one 

follows the procedure14 given in the following:
•	 Take real data (for example, three variables x, y, z) and calculate the average values 

of each variable; this will give you the vector of (three) average values ( x, y, z).
•	 Take your test data (let us say xi = 1, yi = 4, zi = 6).
•	 Calculate the vector of differences between your test data and vector of average 

values ( xi − x, yi − y, zi − z) = (1 − x, 4 − y, 6 − z ); this is a vector of differences 
from mean values.

•	 Calculate the variance–covariance matrix of your data—this will give you a 3 × 3 
matrix. Make an inverse of it.

•	 Multiply (as matrix) the vector of differences by the inverse covariance matrix 
by the vector of differences.

•	 Take a square root of this multiplication; this is the Mahalanobis distance.
•	 Hamming distance introduced by Hamming (1950) to compare binary vectors; 

it gives 0 if elements are the same, and 1 if they are different, and adds up the 
scores; this counts in how many points the vectors differ. As with the Gower dis-
tance for qualitative data, it compares pairs of observations, variable by variable.

•	 Cosine distance (cosine similarity) measures the angle of two vectors. In case of 
similarity, the angle is 0° and cos(0°) = 1. In cases of dissimilarity, the angle of 
two vectors increases, and its cosine is in range [0,1). Two vectors being opposite 
have a distance of − 1. Cosine distance is expressed as: 

∑n

i=1
AiBi√∑n

i=1
A2

i

√∑n

i=1
B2

i

 , where A 

and B are the analysed vectors (variables). The counter is the sum of products of 
paired values of both variables. The nominator is the total of the squared values 
of both variables.

13  https://​james​mccaf​frey.​wordp​ress.​com/​2020/​04/​21/​examp​le-​of-​calcu​lating-​the-​gower-​dista​nce/.
14  https://​james​mccaf​frey.​wordp​ress.​com/​2017/​11/​09/​examp​le-​of-​calcu​lating-​the-​mahal​anobis-​dista​nce/.

https://jamesmccaffrey.wordpress.com/2020/04/21/example-of-calculating-the-gower-distance/
https://jamesmccaffrey.wordpress.com/2017/11/09/example-of-calculating-the-mahalanobis-distance/
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•	 Cophenetic distance proposed by Sokal and Rohlf (1962), applied only to hier-
archical clustering. It measures the height of the dendrogram between two clus-
ters, or more precisely, the height of the dendrogram where the two branches that 
include the two objects merge into a single branch.

•	 Levenshtein distance introduced by Levenshtein (1965), also known as edit dis-
tance, mostly used in text analysis. It reflects the minimum number of corrections 
(delete, insert, substitute) necessary to change one vector into another.15

Clustering with k‑means

The idea of k-means was introduced by Steinhaus (1956), the first algorithm was 
developed by Lloyd (1957), while the term k-means was proposed by MacQueen 
(1967) (see Bock 2007). With the k-means method, a number of clusters k are assumed 
a priori, initial multi-dimensional coordinates of the k centroids are set, the matrix of 
distances between all sample points and k centroids is calculated, and finally, the loca-
tion of centroids is optimised by minimising the total distance of points from cores 
(Fig. 4). Location of centroids is non-restricted and can be in any place on the plane 
(surface) where the sample data are located. All points are assigned to clusters.

Clustering with PAM and CLARA​

The idea of clustering with PAM (partitioning around medoids) was introduced 
by Kaufman and Rousseeuw (1987). As with k-means, k core points are assumed 
a priori. However, they are not selected freely as in k-means, but must belong 
to the sample. Finding the best combination of k points which become medoids 
minimising the total distance of points from cores requires an iterative approach 
(Fig. 5). All points are assigned to clusters.

The CLARA (clustering large applications) method is the big data equiva-
lent of PAM. It was proposed by Kaufman and Rousseeuw (1990). It works in 
the same way as PAM but on a subsample, which classifies points into clusters. 

Fig. 3   Distance metrics. Source: Own work

15  https://​www.​baeld​ung.​com/​cs/​leven​shtein-​dista​nce-​compu​tation.

https://www.baeldung.com/cs/levenshtein-distance-computation
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The rest of the points are assigned to clusters using the k-nearest neighbours 
algorithm.

Hierarchical (agglomerative) clustering

Hierarchical clustering was introduced by Breiman et al. (1984). It assumes con-
tinuous clustering which can be selected after division. The bottom-up algorithm 
starts with all observations constituting their own clusters—singletons. The clus-
ters are iteratively merged in bigger groups. In the last stage, all observations 
belong to one cluster. This division can be presented in a dendrogram. To read an 
output, one can decide how many clusters to see or at which height to cut the tree. 
All observations are assigned to some clusters (Fig. 6).

Spatial clustering with SKATER and REDCAP

The SKATER (spatial “K”luster analysis by tree edge removal) algorithm was 
proposed by Assuncão et al. (2006). It is based on the pruning of trees constructed 
as a weighted connectivity graph with edges and nodes. It clusters the values with 
regard to their location. Clusters of similar values are expected to be located next 
to each other. For each region, it makes a list of contiguous neighbours, and for 
each neighbour, it calculates the cost, that is, the total distance between all vari-
ables attached to areas. For each region, an algorithm chooses two closest neigh-
bours (in terms of data) and finally groups areas into the most coherent spatially 
continuous clusters.

The REDCAP (regionalisation with dynamically constrained agglomerative 
clustering and partitioning) algorithm was developed by Guo (2008) as an exten-
sion of SKATER. It uses a hierarchical agglomeration method with spatial con-
straints. It applies three criteria for defining the distance between values [single 
linkage, average linkage and complete linkage (Fig.  7)] and two “constraining 
strategies” with regard to spatial location: first-order neighbourhood (sharing a 
common border) or full-order neighbourhood (having links to all other regions).

DBSCAN clustering

DBSCAN (density-based spatial clustering of applications with noise) was pro-
posed by Ester et al. (1996). It does not use distance metrics and nearest neigh-
bours (as with PAM, for example), but examines the spatial density of points to 
determine dense and sparse areas. The algorithm sets clusters one by one. Start-
ing from a randomly chosen point, it examines the neighbourhood in a given 
radius ε and marks the points belonging to the cluster and the points which con-
stitute noise. All points belonging to the cluster are iteratively tested, and the full 
cluster is formed. In the same procedure, points which constitute noise against the 
previously formed cluster are subsequently examined. Points can belong to a clus-
ter (core and border) or stay outside the cluster (noise). DBSCAN requires that 
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the radius of epsilon ε and the minimum number of points in this radius MinPts 
are established. For each point, one counts the number of points in radius ε and 
checks whether the points fall into the radius of other points. Core points have at 

Fig. 4   Clustering with k-means. Source: Own work

Fig. 5   Clustering with PAM. Source: Own work
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least the minimum number of points (MinPts) within a radius of ε. Border points 
are within the radius ε from the core point, but do not themselves contain MinPts 
points in their radius ε. Noise points are outside the radius of core and boundary 
points (Fig. 8). Sensitivity analysis is conducted with the number of clusters and 
percentage of noise depending on ε and MinPts. Even if the method is known as 
“unsupervised”, it requires the setting of two parameters by the researcher, which 
are crucial for the result (Fig. 9).

Clustering quality measure: silhouette

Silhouette statistics are used to test the quality of clustering, in particular, if the 
number of clusters k was set properly. The individual statistic Si is given by a for-
mula Si =

(bi−ai)
max (ai,bi)

 , where ai is the average distance from the point to all other 
objects in the cluster, while bi is the minimum average distance from the point to 
other clusters (tested for each cluster separately). Global S is given as S =

∑n

i=1
Si

n
 

(averaged individual Si). Si and S statistics are limited s ∊ [− 1, 1]. The negative 

Fig. 6   Hierarchical clustering. Source: Own work

Fig. 7   Definitions of distances between clusters. Source: https://​www.​datac​amp.​com/​commu​nity/​tutor​
ials/​hiera​rchic​al-​clust​ering-R

https://www.datacamp.com/community/tutorials/hierarchical-clustering-R
https://www.datacamp.com/community/tutorials/hierarchical-clustering-R
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values of the silhouette statistics are undesirable, because it means that ai > bi, so the 
objects in another cluster are closer than the objects in the same cluster. On the con-
trary, positive values of the silhouette statistics are desirable. The optimal value of Si 
and S statistics is close to 1 (s ~ 1), which occurs when the distance between the 
observation and the middle point in the same cluster is minimal. In the interpreta-
tion, one looks for the highest values of the silhouette statistics for a different num-
ber of clusters k.

Clustering quality measure: inertia

Inertia for clusters is a concept similar to analysis of variance and is helpful in 
deciding which number of clusters works the best. It calculates the sum of the 
weighted squared distances between observations and their cluster centre (within-
cluster inertia, W), between centres of clusters and all observations (between-
cluster inertia, B) and between observations and the centre of all observations 

Fig. 8   Search algorithm of DBSCAN method. Source: https://​www.​kdnug​gets.​com/​2020/​04/​dbscan-​clust​
ering-​algor​ithm-​machi​ne-​learn​ing.​html

Fig. 9   Results of DBSCAN: a geographical clusters, b distribution of number of clusters depending on ε 
and minPts, c distribution of noise percentage depending on ε and minPts. Source: Own work

https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
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(total inertia, T). Good clustering is characterised by high inter-cluster inertia 
(diversity) and low intra-cluster inertia (heterogeneity). For two partitions, one 
compares their Qs (Q = 1 − W/T) and chooses the partition with higher Q.

Within-cluster (intra-cluster) inertia W, assuming the existence of a PK parti-
tion, is the sum of I(CK) inertia in all available K (k = 1, …, K) clusters and is 
expressed by:

where the individual intra-cluster inertia I(Ck) is determined as:

where di is the distance between observation xi and the centre of the cluster gk, while 
wi is the weight assigned to the observation (which specifically may be 1/n for n 
observations). It measures the heterogeneity within clusters—the lower the inertia 
and thus the heterogeneity, the more coherent the clusters.

Between-cluster inertia B is a measurement of the separation between clusters 
and is expressed as the sum of the weighted squared distances dk between the 
centres of gk clusters and the centre g of all observations considered together. 
Hence, the inter-cluster inertia is given as:

where μk is the sum of the weights assigned to the observations inside the given 
cluster k:

Total inertia T is the sum of the weighted squared distances dg between indi-
vidual observations xi and the centre g of all observations taken together:

It does not depend on the division into clusters and can be also expressed as the 
sum of intra-cluster inertia W and inter-cluster inertia B:

W =
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∑
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Clustering quality measure: Dunn index

The Dunn index, introduced by Dunn (1974), is based on extreme values only. It 
examines the quality of clustering, in particular, whether the number of clusters k 
was set properly. It compares two parameters of K clusters:

•	 In counter, the minimum separation of clusters is calculated as the minimum dmin 
(for all clusters) of the shortest distance dkkʹ between two clusters (separation 
between the closest points M of two clusters k and kʹ):

•	 In numerator, the diameter of the cluster is calculated as the maximum (for all 
clusters) of the largest distance Dk between points M within given cluster k:

	   Thus, the Dunn index is expressed as Dunn = dmin/dmax. In the case of good 
partitioning, in which clusters are small (small diameter) and well separated 
(large distance between clusters), the Dunn index will be high.

	   Much more on measures of clustering quality can be found in Vignettes to R 
package clusterCrit:16: or in Tibshirani et al. (2000).

k‑fold cross‑validation

Currently, there exist two approaches to cross-validation (CV): (i) dividing data into 
two groups—training and testing or (ii) dividing data into three groups—training, 
fine-tuning and testing. When dividing data into two groups, the sample is divided 
into k-folds (parts, subsamples); k − 1 folds are used in training of the model and 1 
part is used in testing of the model. The process is conducted recursively k times, so 
each of the k-folds plays a role of testing part of the sample. When dividing data into 
three groups, part of the data is kept aside for out-of-sample predictions, and these 
data are not used for model fitting and fine-tuning. The rest of the data is used as it 
is with the approach of dividing data into two groups. In the case of fivefold cross-
validation, the data used for model fitting and fine-tuning are divided into five equal 
parts (each part consisting of 20% of the data), and in each of five iterations, the 
model is fitted on 80% of the data and tested on 20% of the data.

Supervised machine learning—typology of methods

Supervised learning tools supplement typical models of regression (with continu-
ous dependent variable) and classification (with few levels of dependent variable). 

dmin = min
k≠k�

dkk� where dkk� = min
i∈Ik ,j∈Ik�

||||
||||
M

{k}

i
−M

{k�}
j

||||
||||
.

dmax = max
1≤k≤K

Dk where Dk = max
i,j∈Ik ,i≠j

|||
|||M
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i
−M

{k}

j

|||
|||.

16  https://​cran.r-​proje​ct.​org/​web/​packa​ges/​clust​erCrit/​vigne​ttes/​clust​erCrit.​pdf.

https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf
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According to Kuhn and Johnson (2016), regression modelling with the exception 
of linear regression models, such as ordinary least squares (OLS), includes non-
linear regressions (based on neural networks, SVM, KNN) and regression trees 
and rule-based models (such as regression trees, random forest, cubist, boosting). 
Similar divisions can be found for classification methods, which include linear 
models (logistic regression—logit, probit or linear discriminant analysis), non-
linear regressions (such as neural networks, support vector machines, K-nearest 
neighbours, naïve Bayes) and regression trees and rule-based models (regression 
trees, random forest, boosting).

Naïve Bayes classifier

The Naïve Bayes classifier is a statistical model, based on Bayesian probability for-
mula. In the building phase of the binary choice model (e.g. class yes/no, more lev-
els also possible), it derives the probabilities of each class, and the probabilities that 
features X (which include features e.g. × 1, × 2, …) interact with each class; in fact, it 
determines the probabilities of features appearing in a given class P(yes), P(no) and 
the structure of features in a given class P(× 1|yes), P(× 2|yes), P(× 1|no), P(× 2|no). 
It assumes that features X (e.g. × 1, × 2, …) are independent of each other. In the pre-
diction of new data, it calculates the Bayesian posterior probabilities by using (in the 
case of two features) P(c|X) = P(X|c)⋅P(c)

P(X)
=

P(x1|c)⋅P(x2|c)⋅P(c)
P(x1)⋅P(x2)

 . The highest score classi-
fies observations into a given class.

K‑nearest neighbours classifier

In k-nearest neighbours classifier, the observations are classified based on the class 
of their k-nearest neighbours (knn). Firstly, it determines which k training observa-
tions are the nearest neighbours for test observation, by calculating multi-dimen-
sional distance; secondly, it checks the classes of knn training observations; and 
thirdly, with majority (or distance-weighted) voting it chooses the most frequent 
class. It requires calculating distances between test and all training observations. 
Good overview of the method can be found in Cunningham and Delany (2007).

Random forest classifier

The random forest classifier is an ensemble method (using the concept of the wis-
dom of the crowd), based on decision trees, which divide selected features into 
groups to profile a given class. Random forest is a collection of independent trees; 
they differ from each other in that observations are selected in bagging (sampling 
with replacement, bootstrap) and m features are drawn randomly (a few variables 
from a bigger set). Majority voting aggregates the results from trees—it takes each 
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class in turn, checks the output (class) at the bottom of each tree and calculates the 
average of the features’ values, which are on the path to a given class. Quality check-
ing follows the out-of-bag (oob) scheme: when bagging, one divides observations, 
keeping approximately 2/3 for training and around 1/3 for testing the model. The 
number of features m should be small enough to keep trees uncorrelated and large 
enough to keep trees strong; it is optimised by controlling the oob error rate. The 
oob error rate is the frequency that test data did not meet their true value. Variable 
importance is tested by permuting the values of the mth variable among oob obser-
vations and checking the prediction of trees; the difference between ratios of correct 
class prediction in non-permutated and permutated tests is known as variable impor-
tance. A technical overview is available in vignettes of random forest software by 
Breiman and Cutler (see link17).

Support vector machines

With support vector machines, the observations are separated into classes with 
lines (in 2D) or hyperplanes (in 3D and more). Support vectors are the points in 
all classes which are closest to the line/hyperplane; the distance (called the margin) 
between those points and the line/hyperplane should be maximised. In the event that 
the points are not linearly separable, they are transformed to make this possible (see 
introduction in link18).

Artificial neural networks

An artificial neural network (ANN) is a classifier method which operates on binary 
input and output. Each type of information (variable, image cell, etc.) is analysed by 
an individual perceptron. Numerical data are binarised depending on their threshold 
(e.g. x > a), whereas quantitative data are binarised depending on a given feature 
(yes/no). Dummy outputs of perceptrons are weighted and aggregated in an additive 
function; this result is again contrasted with the threshold to give a binary answer. 
The answer given by the ANN is compared with the true state. In case of error 
(expressed as loss function), the ANN learns by altering the weights to match the 
true answer (see introduction in link19).

Maximum entropy classifier

The maximum entropy classifier is a probabilistic model, without assumptions on 
independence of features (oppositely, it assumes correlations), using the concept of 
entropy. It is based on the Bayesian probability formula as with the naïve Bayes 

18  https://​towar​dsdat​ascie​nce.​com/​https-​medium-​com-​pupal​erush​ikesh-​svm-​f4b42​800e9​89.

17  https://​www.​stat.​berke​ley.​edu/​~breim​an/​Rando​mFore​sts/​cc_​home.​htm.

19  https://​www.​bmc.​com/​blogs/​neural-​netwo​rk-​intro​ducti​on/.

https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.bmc.com/blogs/neural-network-introduction/
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classifier, but instead of assuming empirical probabilities, it starts with uniform 
weights and optimises them (see introduction in link20).

Autoencoder‑based residual network

Autoencoder-based residual networks are unsupervised learning models that (simi-
larly to PCA) extract features from wider datasets. The encoder network transforms 
the input image into the model (with latent variables), while decoder network recon-
structs the image. The residual network adds a layer which gradually learns from 
residuals (see introduction in link21).

Gradient boosting

The gradient boosting algorithm, for which the most popular is XGBoots, is, like 
random forest, based on decision trees. However, instead of growing all trees simul-
taneously (as with random forest), it works iteratively. Next, the model corrects 
the mistakes of the previous model—misclassifications are analysed, and wrongly 
predicted observations are given higher weights in analysis to be more intensively 
addressed in the next round. The final model is an additive decision tree, which 
includes all good models (see introduction in link22).

Cubist

The Cubist algorithm, introduced by Quinlan (1992), is based on a tree. For each 
path (to the terminal leaf), it creates a rule with a regression multivariate model. 
Covariates which fulfil the criteria of the tree are used in those models. These mod-
els are used for predictions and strengthened (averaged) with neighbouring models 
(located above in the tree).
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Appendix 2: Implementations in R

The majority of methods discussed in this paper have their software implementa-
tions in R. None of the other existing software offers comprehensive solutions for 
either machine learning or spatial data processing and computations. TaskViews of 
R software (at www.r-​proje​ct.​org) give comprehensive and up-to-date overviews of 
packages for clustering (Cluster Analysis & Finite Mixture Models23) and machine 
learning (Machine Learning & Statistical Learning24). Its applications for environ-
mental data can be found in TaskViews on Analysis of Ecological and Environmen-
tal Data.25 Those for spatial analysis can be found in TaskViews on Analysis of Spa-
tial Data26 and Handling and Analysing Spatio-Temporal Data.27

Among a great variety of packages and functions, few examples are particularly 
notable:

Unsupervised learning and clustering

•	 stats::, ClusterR::, cluster::, clustering::, fpc::, factoextra::, FactoMineR:: 
offer standard clustering a-spatial methods (k-means, PAM, CLARA, knn) and 
their testing, different metrics of distance,

•	 NbClust::, optCluster:: offers many tests for clustering quality and selection of 
number of clusters,

•	 h2o:: offers a-spatial fuzzy k-means algorithms,
•	 ClustGeo:: and rgeoda:: offer simultaneous clustering of values and locations 

(spatially constrained clustering),
•	 spatialClust:: offers spatial clustering using fuzzy geographically weighted 

clustering,
•	 SpODT:: offers a spatial oblique decision tree based on the classification and 

regression tree,

23  https://​cran.r-​proje​ct.​org/​web/​views/​Clust​er.​html.
24  https://​cran.r-​proje​ct.​org/​web/​views/​Machi​neLea​rning.​html.
25  https://​cran.r-​proje​ct.​org/​web/​views/​Envir​onmet​rics.​html.
26  https://​cran.r-​proje​ct.​org/​web/​views/​Spati​al.​html.
27  https://​cran.r-​proje​ct.​org/​web/​views/​Spati​oTemp​oral.​html.

https://statweb.stanford.edu/~gwalther/gap
https://statweb.stanford.edu/~gwalther/gap
http://www.r-project.org
https://cran.r-project.org/web/views/Cluster.html
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/Environmetrics.html
https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/views/SpatioTemporal.html
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•	 dbscan:: offers density-based clustering with DBSCAN,
•	 rgeoda:: offers SKATER and REDCAP algorithms,28

•	 automap:: offers may versions of kriging,
•	 StatMatch:: offers Gower distance.

Non-covered topics are also widely available in R: in geoGAM:: (geoadditive 
models for spatial prediction), mgcv:: (generalised additive model using splines), 
MapGam:: (mapping smoothed effect estimates from individual-level data), Spa-
tialEpi:: (cluster detection and disease mapping for spatial epidemiology), rsats-
can:: (interface to SaTScan software), graphscan:: (scan statistics in 2D and 3D), 
rflexscan:: (flexible spatial scan statistic).

Supervised learning

•	 ranger::, randomForest:: offer random forest modelling,
•	 xgboost::, gbm::, plyr:: offer gradient boosting,
•	 carret:: offers many classification and regression machine algorithms and fine-

tuning of its parameters,
•	 nnet:: offers neural networks algorithms, in particular a model-averaged neural 

network,
•	 earth:: offers multivariate adaptive regression splines, also bagged (MARS),
•	 cubist::, Cubist:: offer Cubist algorithms,
•	 kernlab:: offers support vector regression, also with radial basis function kernel 

regression trees,
•	 e1071:: offers naïve Bayes model,
•	 party:: offers partitioning and conditional inference tree—regression trees for all 

types of data.

Appendix 3: Data used in spatial machine learning

A popular source of data is MODIS (moderate resolution imaging spectroradiom-
eter), which contains data from NASA (https://​modis.​gsfc.​nasa.​gov/) for the whole 
of the Earth’s surface for every 1–2 days in 36 spectral bands. The data are divided 
into four categories:

•	 MODIS level 1 data (with geolocation, cloud mask and atmosphere products) 
http://​ladsw​eb.​nascom.​nasa.​gov/.

•	 MODIS land products (with land surface temperature, products, vegetation indi-
ces, etc.) https://​lpdaac.​usgs.​gov/.

•	 MODIS cryosphere products (with snow cover and sea ice surface temperature) 
http://​nsidc.​org/​daac/​modis/​index.​html.

28  See rgeoda:: vignettes https://​rgeoda.​github.​io/​rgeoda-​book/ and tutorials.
  https://​geoda​center.​github.​io/​tutor​ials/​spati​al_​clust​er/​skater.​html.

https://modis.gsfc.nasa.gov/
http://ladsweb.nascom.nasa.gov/
https://lpdaac.usgs.gov/
http://nsidc.org/daac/modis/index.html
https://rgeoda.github.io/rgeoda-book/
https://geodacenter.github.io/tutorials/spatial_cluster/skater.html
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•	 MODIS ocean colour and sea surface temperature products (also on carbon, fluo-
rescence line, etc.) http://​ocean​color.​gsfc.​nasa.​gov/.

The Planetary Habitability Laboratory also offers satellite images and climate 
data http://​phl.​upr.​edu/​data. There are also many software packages which are help-
ful for gathering proper data (such as SAGA, System for Automated Geoscientific 
Analyses29).

Using three channels (red, green, blue) of aerial image, one can construct so-
called spectral predictors, e.g. visible vegetation index (VVI, Planetary Habitabil-
ity Laboratory), triangular greenness index (TGI), normalised difference vegetation 
index (NDVI), normalised green–red difference index (NGRDI), green leaf index 
(GLI), etc. R function rgb_indices() from uavRst:: package30 offers 17 spectral indi-
ces. IndexDataBase31 offers comprehensive specification of formula for spectral 
indices based on data from 68 different sensors. One can also run PCA on visible 
spectra and spatial predictors—the first few principal components are used instead 
of these variables to avoid duplication of the information.

Another popular source of data is LIDAR (light detection and ranging). They 
are available from many sources32 as OpenTopology, USGS Earth Explorer, United 
States Inter-agency Elevation Inventory, NOAA Digital Coast, National Ecological 
Observatory Network (NEON), LIDAR Data Online, etc. It allows variables to be 
obtained as digital elevation model (DEM), slope and aspect (on the basis of DEM) 
in, e.g. radians, geolocation variables (such as longitude and latitude), etc.

Additionally, interesting information is Night Light Data, available from World 
Bank,33 SOS NOAA (Science on a Sphere, National Oceanic and Atmospheric 
Administration34) and from NASA35 or Google Earth (earth.google.com).

One can also gather much open data from Open Governmental repositories, as 
data.gov (USA), data.gov.uk (UK), govdata.de (Germany), https://​www.​europ​eanda​
tapor​tal.​eu/​en (European Union), etc.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
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you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
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are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
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29  http://​www.​saga-​gis.​org/​en/​index.​html.
30  http://​finzi.​psych.​upenn.​edu/​libra​ry/​uavRst/​html/​rgb_​indic​es.​html.
31  https://​www.​index​datab​ase.​de/​db/i-​single.​php?​id=​375.
32  https://​gisge​ograp​hy.​com/​top-6-​free-​lidar-​data-​sourc​es/.
33  https://​datac​atalog.​world​bank.​org/​datas​et/​world​wide-​night-​time-​lights.
34  https://​sos.​noaa.​gov/​datas​ets/​night​time-​lights/.
35  https://​www.​nasa.​gov/​featu​re/​godda​rd/​2017/​new-​night-​lights-​maps-​open-​up-​possi​ble-​real-​time-​appli​
catio​ns.

http://oceancolor.gsfc.nasa.gov/
http://phl.upr.edu/data
https://www.europeandataportal.eu/en
https://www.europeandataportal.eu/en
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.saga-gis.org/en/index.html
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